Applications of the Dulmage–Mendelsohn decomposition for debugging nonlinear optimization problems

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-10-01 DOI:10.1016/j.compchemeng.2023.108383
Robert B. Parker , Bethany L. Nicholson , John D. Siirola , Lorenz T. Biegler
{"title":"Applications of the Dulmage–Mendelsohn decomposition for debugging nonlinear optimization problems","authors":"Robert B. Parker ,&nbsp;Bethany L. Nicholson ,&nbsp;John D. Siirola ,&nbsp;Lorenz T. Biegler","doi":"10.1016/j.compchemeng.2023.108383","DOIUrl":null,"url":null,"abstract":"<div><p>Nonlinear modeling and optimization is a valuable tool for aiding decisions by engineering practitioners, but programming an optimization problem based on a complex electrical, mechanical, or chemical process is a time-consuming and error-prone activity. Therefore, there is a need for model analysis and debugging tools that can detect and diagnose modeling errors. One such tool is the Dulmage–Mendelsohn decomposition, which identifies structurally under- and over-determined subsets in systems of equations and variables by partitioning the bipartite graph of the system. This work provides the necessary background to understand the Dulmage–Mendelsohn decomposition and its application to the analysis of nonlinear optimization problems, demonstrates its use in diagnosing a variety of modeling errors, and introduces software implementations for analyzing nonlinear optimization problems in the Pyomo and JuMP algebraic modeling languages.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"178 ","pages":"Article 108383"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135423002533/pdfft?md5=70482ea65352ca08254c413f5b3da9f2&pid=1-s2.0-S0098135423002533-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423002533","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Nonlinear modeling and optimization is a valuable tool for aiding decisions by engineering practitioners, but programming an optimization problem based on a complex electrical, mechanical, or chemical process is a time-consuming and error-prone activity. Therefore, there is a need for model analysis and debugging tools that can detect and diagnose modeling errors. One such tool is the Dulmage–Mendelsohn decomposition, which identifies structurally under- and over-determined subsets in systems of equations and variables by partitioning the bipartite graph of the system. This work provides the necessary background to understand the Dulmage–Mendelsohn decomposition and its application to the analysis of nonlinear optimization problems, demonstrates its use in diagnosing a variety of modeling errors, and introduces software implementations for analyzing nonlinear optimization problems in the Pyomo and JuMP algebraic modeling languages.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dulmage-Mendelsohn分解在非线性优化问题调试中的应用
非线性建模和优化是帮助工程从业者决策的有价值的工具,但是基于复杂的电气、机械或化学过程的编程优化问题是一项耗时且容易出错的活动。因此,需要能够检测和诊断建模错误的模型分析和调试工具。其中一个工具是Dulmage-Mendelsohn分解,它通过划分系统的二部图来识别方程和变量系统中结构上欠定和过定的子集。这项工作为理解Dulmage-Mendelsohn分解及其在非线性优化问题分析中的应用提供了必要的背景,展示了它在诊断各种建模错误中的应用,并介绍了Pyomo和JuMP代数建模语言中用于分析非线性优化问题的软件实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board Application and interpretability of a hybrid-enhanced XGBoost model for corrosion-rate prediction in alkylation unit piping Data-driven hybrid control for coordinated operation of multicolumn NGL separation systems Manifold-aware stationary subspace and divergence analysis for nonstationary process monitoring Generative learning for slow manifolds and bifurcation diagrams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1