Aspect-based Sentiment Analysis and Location Detection for Arabic Language Tweets

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Applied Computer Systems Pub Date : 2022-12-01 DOI:10.2478/acss-2022-0013
N. Alshammari, Amal Almansour
{"title":"Aspect-based Sentiment Analysis and Location Detection for Arabic Language Tweets","authors":"N. Alshammari, Amal Almansour","doi":"10.2478/acss-2022-0013","DOIUrl":null,"url":null,"abstract":"Abstract The research examines the accuracy of current solution models for the Arabic text sentiment classification, including traditional machine learning and deep learning algorithms. The main aim is to detect the opinion and emotion expressed in Telecom companies’ customers tweets. Three supervised machine learning algorithms, Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF), and one deep learning algorithm, Convolutional Neural Network (CNN) were applied to classify the sentiment of 1098 unique Arabic textual tweets. The research results show that deep learning CNN using Word Embedding achieved higher performance in terms of accuracy with F1 score = 0.81. Furthermore, in the aspect classification task, the results reveal that applying Part of Speech (POS) features with deep learning CNN algorithm was efficient and reached 75 % accuracy using a dataset consisting of 1277 tweets. Additionally, in this study, we added an additional task of extracting the geographical location information from the tweet content. The location detection model achieved the following precision values: 0.6 and 0.89 for both Point of Interest (POI) and city (CIT).","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"105 1","pages":"119 - 127"},"PeriodicalIF":0.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2022-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The research examines the accuracy of current solution models for the Arabic text sentiment classification, including traditional machine learning and deep learning algorithms. The main aim is to detect the opinion and emotion expressed in Telecom companies’ customers tweets. Three supervised machine learning algorithms, Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF), and one deep learning algorithm, Convolutional Neural Network (CNN) were applied to classify the sentiment of 1098 unique Arabic textual tweets. The research results show that deep learning CNN using Word Embedding achieved higher performance in terms of accuracy with F1 score = 0.81. Furthermore, in the aspect classification task, the results reveal that applying Part of Speech (POS) features with deep learning CNN algorithm was efficient and reached 75 % accuracy using a dataset consisting of 1277 tweets. Additionally, in this study, we added an additional task of extracting the geographical location information from the tweet content. The location detection model achieved the following precision values: 0.6 and 0.89 for both Point of Interest (POI) and city (CIT).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于方面的阿拉伯语推文情感分析和位置检测
摘要本研究考察了目前阿拉伯语文本情感分类的解决方案模型的准确性,包括传统的机器学习和深度学习算法。主要目的是检测电信公司客户推文中表达的观点和情感。采用逻辑回归(LR)、支持向量机(SVM)和随机森林(RF)三种监督机器学习算法和卷积神经网络(CNN)一种深度学习算法对1098条阿拉伯语文本推文的情感进行分类。研究结果表明,使用Word Embedding的深度学习CNN在准确率方面取得了更高的性能,F1得分= 0.81。此外,在方面分类任务中,研究结果表明,在包含1277条推文的数据集上,将词性(POS)特征与深度学习CNN算法结合使用是有效的,准确率达到75%。此外,在本研究中,我们增加了从tweet内容中提取地理位置信息的额外任务。位置检测模型对兴趣点(POI)和城市(CIT)的精度分别为0.6和0.89。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
期刊最新文献
Multimodal Biometric System Based on the Fusion in Score of Fingerprint and Online Handwritten Signature Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism BRS-based Model for the Specification of Multi-view Point Ontology Empirical Analysis of Supervised and Unsupervised Machine Learning Algorithms with Aspect-Based Sentiment Analysis Approximate Nearest Neighbour-based Index Tree: A Case Study for Instrumental Music Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1