Advanced Multivariate Time Series Forecasting Models

Miss Lei Wang
{"title":"Advanced Multivariate Time Series Forecasting Models","authors":"Miss Lei Wang","doi":"10.3844/JMSSP.2018.253.260","DOIUrl":null,"url":null,"abstract":"In this study, the focus is to collect and summarize various advanced forecasting models for multivariate time series dataset. We have discussed about the inherent forecasting strengths and weaknesses related to these time series modelings. Also, the main section deal with the experience of using such data in econometric analysis. Besides, the implementation of SAS and R softwares improve the parameter estimation and forecasting accuracy. Eventually, we evaluated these forecasting models by different criterions and select the best one for the future tendency of land market value.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"50 1","pages":"253-260"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2018.253.260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

In this study, the focus is to collect and summarize various advanced forecasting models for multivariate time series dataset. We have discussed about the inherent forecasting strengths and weaknesses related to these time series modelings. Also, the main section deal with the experience of using such data in econometric analysis. Besides, the implementation of SAS and R softwares improve the parameter estimation and forecasting accuracy. Eventually, we evaluated these forecasting models by different criterions and select the best one for the future tendency of land market value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进的多元时间序列预测模型
本研究的重点是收集和总结多元时间序列数据集的各种先进预测模型。我们已经讨论了与这些时间序列建模相关的固有预测优点和缺点。此外,主要部分处理在计量经济分析中使用这些数据的经验。此外,SAS和R软件的实现提高了参数估计和预测的精度。最后,采用不同的评判标准对这些预测模型进行评价,选出最适合未来土地市场价值走势的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
期刊最新文献
Multivariate Option Pricing with Gaussian Mixture Distributions and Mixed Copulas Stochastic Model for Pricing Normal Bonds when Maturity Periods Cross Over to Pandemic Period Measurable Functional Calculi and Spectral Theory Elements of Formal Probabilistic Mechanics Chlodowsky Type (λ, q)-Bernstein Stancu Operator of Korovkin-Type Approximation Theorem of Rough I-Core of Triple Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1