HEp-2 cell classification based on a Deep Autoencoding-Classification convolutional neural network

Jingxin Liu, Bolei Xu, L. Shen, J. Garibaldi, G. Qiu
{"title":"HEp-2 cell classification based on a Deep Autoencoding-Classification convolutional neural network","authors":"Jingxin Liu, Bolei Xu, L. Shen, J. Garibaldi, G. Qiu","doi":"10.1109/ISBI.2017.7950689","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel deep learning model termed Deep Autoencoding-Classification Network (DACN) for HEp-2 cell classification. The DACN consists of an autoencoder and a normal classification convolutional neural network (CNN), while the two architectures shares the same encoding pipeline. The DACN model is jointly optimized for the classification error and the image reconstruction error based on a multi-task learning procedure. We evaluate the proposed model using the publicly available ICPR2012 benchmark dataset. We show that this architecture is particularly effective when the training dataset is small which is often the case in medical imaging applications. We present experimental results to show that the proposed approach outperforms all known state of the art HEp-2 cell classification methods.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"529 1","pages":"1019-1023"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we present a novel deep learning model termed Deep Autoencoding-Classification Network (DACN) for HEp-2 cell classification. The DACN consists of an autoencoder and a normal classification convolutional neural network (CNN), while the two architectures shares the same encoding pipeline. The DACN model is jointly optimized for the classification error and the image reconstruction error based on a multi-task learning procedure. We evaluate the proposed model using the publicly available ICPR2012 benchmark dataset. We show that this architecture is particularly effective when the training dataset is small which is often the case in medical imaging applications. We present experimental results to show that the proposed approach outperforms all known state of the art HEp-2 cell classification methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度自编码-分类卷积神经网络的HEp-2细胞分类
在本文中,我们提出了一种新的深度学习模型,称为深度自动编码分类网络(DACN),用于HEp-2细胞分类。DACN由一个自动编码器和一个正常分类卷积神经网络(CNN)组成,而这两个架构共享相同的编码管道。基于多任务学习过程,对DACN模型进行了分类误差和图像重建误差的联合优化。我们使用公开可用的ICPR2012基准数据集评估提出的模型。我们表明,当训练数据集很小时,这种架构特别有效,这在医学成像应用中经常出现。我们提出的实验结果表明,所提出的方法优于所有已知的HEp-2细胞分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1