Advanced characterization of organic–metal and organic–organic interfaces: from photoelectron spectroscopy data to energy-level diagrams

IF 2.9 4区 物理与天体物理 Q2 OPTICS Journal of Nonlinear Optical Physics & Materials Pub Date : 2022-11-02 DOI:10.1088/2515-7639/ac9f6f
Qi Wang, Jiacheng Yang, A. Gerlach, F. Schreiber, S. Duhm
{"title":"Advanced characterization of organic–metal and organic–organic interfaces: from photoelectron spectroscopy data to energy-level diagrams","authors":"Qi Wang, Jiacheng Yang, A. Gerlach, F. Schreiber, S. Duhm","doi":"10.1088/2515-7639/ac9f6f","DOIUrl":null,"url":null,"abstract":"Organic–metal and organic–organic interfaces account for the functionality of virtually all organic optoelectronic applications and the energy-level alignment is of particular importance for device performance. Often the energy-level alignment is simply estimated by metal work functions and ionization energies and electron affinities of the organic materials. However, various interfacial effects such as push back, mirror forces (also known as screening), electronic polarization or charge transfer affect the energy-level alignment. We perform x-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) measurements on copper-hexadecafluorophthalocyanine (F16CuPc) and titanyl-phthalocyanine (TiOPc) thin films on Ag(111) and use TiOPc bilayers to decouple F16CuPc layers from the metal substrate. Even for our structurally well-characterized model interfaces and by stepwise preparation of vacuum-sublimed samples, a precise assignment of vacuum-level and energy-level shifts remains challenging. Nevertheless, our results provide guidelines for the interpretation of XPS and UPS data of organic–metal and organic–organic interfaces.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"289 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/ac9f6f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 7

Abstract

Organic–metal and organic–organic interfaces account for the functionality of virtually all organic optoelectronic applications and the energy-level alignment is of particular importance for device performance. Often the energy-level alignment is simply estimated by metal work functions and ionization energies and electron affinities of the organic materials. However, various interfacial effects such as push back, mirror forces (also known as screening), electronic polarization or charge transfer affect the energy-level alignment. We perform x-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) measurements on copper-hexadecafluorophthalocyanine (F16CuPc) and titanyl-phthalocyanine (TiOPc) thin films on Ag(111) and use TiOPc bilayers to decouple F16CuPc layers from the metal substrate. Even for our structurally well-characterized model interfaces and by stepwise preparation of vacuum-sublimed samples, a precise assignment of vacuum-level and energy-level shifts remains challenging. Nevertheless, our results provide guidelines for the interpretation of XPS and UPS data of organic–metal and organic–organic interfaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机-金属和有机-有机界面的高级表征:从光电子能谱数据到能级图
有机-金属和有机-有机界面几乎占据了所有有机光电应用的功能,而能级对准对器件性能尤为重要。通常,能级排列是简单地通过金属功函数、电离能和有机材料的电子亲和力来估计的。然而,各种界面效应,如推回、镜像力(也称为屏蔽)、电子极化或电荷转移都会影响能级排列。我们对银(111)上的铜-十六氟酞菁(F16CuPc)和钛-酞菁(TiOPc)薄膜进行了x射线和紫外光电子能谱(XPS和UPS)测量,并使用TiOPc双层将F16CuPc层与金属衬底解耦。即使我们的结构表征良好的模型界面和真空升华样品的逐步制备,真空能级和能级位移的精确分配仍然具有挑战性。然而,我们的结果为有机-金属和有机-有机界面的XPS和UPS数据的解释提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
48.10%
发文量
53
审稿时长
3 months
期刊介绍: This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.
期刊最新文献
Dominance of polarization modes and absorption on self-focusing of laser beams in collisionless magnetized plasma Influence of the focusing parameter on the SHG efficiency at a wavelength of 968 nm in a ZnSe polycrystal Linear and nonlinear electric and magneto-optical absorption coefficients and relative refractive index changes in WxMo1-xS2 Monolayer: Role of Tungsten contents Optical properties of silver-doped ZnS nanostructures W-chirped solitons and modulated waves patterns in parabolic law medium with anti-cubic nonlinearity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1