Regression analysis for network intrusion detection

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Pub Date : 2021-04-05 DOI:10.1145/3460620.3460751
Arun Nagaraja, U. Boregowda, V. Radhakrishna
{"title":"Regression analysis for network intrusion detection","authors":"Arun Nagaraja, U. Boregowda, V. Radhakrishna","doi":"10.1145/3460620.3460751","DOIUrl":null,"url":null,"abstract":"Machine learning and statistics are categorized as part of data science. Regression is one of the techniques of machine learning. Most of the contributions in the literature in respect to intrusion detection are mainly based on dimensionality reduction using techniques such as PCA, SVD, feature selection, feature reduction techniques and application of classifier algorithms. Very less attention is paid on regression analysis for intrusion detection in the existing literature. There is a scope to apply regression-based analysis for intrusion detection. Regression analysis may be applied for dimensionality reduction, classification or prediction tasks. This paper throws light on the possibility of applying regression analysis for intrusion detection and outlines some of the contributions that addressed regression analysis to perform intrusion detection.","PeriodicalId":36824,"journal":{"name":"Data","volume":"15 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3460620.3460751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Machine learning and statistics are categorized as part of data science. Regression is one of the techniques of machine learning. Most of the contributions in the literature in respect to intrusion detection are mainly based on dimensionality reduction using techniques such as PCA, SVD, feature selection, feature reduction techniques and application of classifier algorithms. Very less attention is paid on regression analysis for intrusion detection in the existing literature. There is a scope to apply regression-based analysis for intrusion detection. Regression analysis may be applied for dimensionality reduction, classification or prediction tasks. This paper throws light on the possibility of applying regression analysis for intrusion detection and outlines some of the contributions that addressed regression analysis to perform intrusion detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络入侵检测的回归分析
机器学习和统计学被归类为数据科学的一部分。回归是机器学习技术之一。在入侵检测方面,大多数文献的贡献主要是基于PCA、SVD、特征选择、特征约简技术和分类器算法的降维。现有文献对回归分析在入侵检测中的应用关注较少。基于回归的分析在入侵检测中有一定的应用范围。回归分析可用于降维、分类或预测任务。本文阐明了将回归分析应用于入侵检测的可能性,并概述了一些解决回归分析执行入侵检测的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
期刊最新文献
Medical Opinions Analysis about the Decrease of Autopsies Using Emerging Pattern Mining Unlocking Insights: Analysing COVID-19 Lockdown Policies and Mobility Data in Victoria, Australia, through a Data-Driven Machine Learning Approach Expert-Annotated Dataset to Study Cyberbullying in Polish Language Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004 A Qualitative Dataset for Coffee Bio-Aggressors Detection Based on the Ancestral Knowledge of the Cauca Coffee Farmers in Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1