Effect of Carrier Gas Flow Field on Chemical Vapor Deposition of 2D MoS2 Crystal

Minyu Bai, Shuai Wen, Jijie Zhao, Yuxuan Du, Fei Xie, Huan Liu
{"title":"Effect of Carrier Gas Flow Field on Chemical Vapor Deposition of 2D MoS2 Crystal","authors":"Minyu Bai, Shuai Wen, Jijie Zhao, Yuxuan Du, Fei Xie, Huan Liu","doi":"10.3390/COATINGS11050547","DOIUrl":null,"url":null,"abstract":"The carrier gas flow field plays a vital role in the chemical vapor deposition (CVD) process of two dimensional (2D) MoS2 crystal, which was studied by simulations and experiments. Different carrier gas flow fields were studied by utilizing three types of precursor carrier which affected the local gas flow field significantly. The experiment results showed that the appropriate precursor vapor concentration could be achieved by local carrier gas flow field conditioning, resulting in single 2D MoS2 crystals of a large size and a high coating rate of 2D MoS2 crystal on the target substrate surface. The carrier gas flow also contributed to the growth of the 2D MoS2 crystal when it flew towards the target surface. The size of deposited single 2D MoS2 crystal reached tens of micrometers and a few layers of 2D MoS2 crystal were characterized and confirmed.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"53 1","pages":"547"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11050547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The carrier gas flow field plays a vital role in the chemical vapor deposition (CVD) process of two dimensional (2D) MoS2 crystal, which was studied by simulations and experiments. Different carrier gas flow fields were studied by utilizing three types of precursor carrier which affected the local gas flow field significantly. The experiment results showed that the appropriate precursor vapor concentration could be achieved by local carrier gas flow field conditioning, resulting in single 2D MoS2 crystals of a large size and a high coating rate of 2D MoS2 crystal on the target substrate surface. The carrier gas flow also contributed to the growth of the 2D MoS2 crystal when it flew towards the target surface. The size of deposited single 2D MoS2 crystal reached tens of micrometers and a few layers of 2D MoS2 crystal were characterized and confirmed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
载气流场对化学气相沉积二维二硫化钼晶体的影响
通过模拟和实验研究了载气流场在二维二硫化钼晶体化学气相沉积(CVD)过程中的重要作用。利用三种前驱体载体,研究了不同载体气相流场对局部气相流场的影响。实验结果表明,通过局部载气流场调节,可以获得合适的前驱体蒸气浓度,得到尺寸较大的单晶二维二硫化钼晶体,并在目标衬底表面获得较高的二硫化钼晶体包覆率。载气流动也促进了二维二硫化钼晶体向目标表面的生长。沉积的二维二硫化钼单晶尺寸达到数十微米,并对多层二硫化钼单晶进行了表征和确认。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anticorrosion Property of Alcohol Amine Modified Phosphoric and Tannic Acid Based Rust Converter and Its Waterborne Polymer-Based Paint for Carbon Steel Comprehensive Data Collection Device for Plasma Equipment Intelligence Studies Coffee Wastes as Sustainable Flame Retardants for Polymer Materials Numerical Investigation on the Evaporation Performance of Desulfurization Wastewater in a Spray Drying Tower without Deflectors Effect of Assembly Unit of Expansive Agents on the Mechanical Performance and Durability of Cement-Based Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1