Robust descriptors for 3D point clouds using Geometric and Photometric Local Feature

Hyoseok Hwang, S. Hyung, Sukjune Yoon, K. Roh
{"title":"Robust descriptors for 3D point clouds using Geometric and Photometric Local Feature","authors":"Hyoseok Hwang, S. Hyung, Sukjune Yoon, K. Roh","doi":"10.1109/IROS.2012.6385920","DOIUrl":null,"url":null,"abstract":"The robust perception of robots is strongly needed to handle various objects skillfully. In this paper, we propose a novel approach to recognize objects and estimate their 6-DOF pose using 3D feature descriptors, called Geometric and Photometric Local Feature (GPLF). The proposed descriptors use both the geometric and photometric information of 3D point clouds from RGB-D camera and integrate those information into efficient descriptors. GPLF shows robust discriminative performance regardless of characteristics such as shapes or appearances of objects in cluttered scenes. The experimental results show how well the proposed approach classifies and identify objects. The performance of pose estimation is robust and stable enough for the robot to manipulate objects. We also compare the proposed approach with previous approaches that use partial information of objects with a representative large-scale RGB-D object dataset.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"59 1","pages":"4027-4033"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6385920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The robust perception of robots is strongly needed to handle various objects skillfully. In this paper, we propose a novel approach to recognize objects and estimate their 6-DOF pose using 3D feature descriptors, called Geometric and Photometric Local Feature (GPLF). The proposed descriptors use both the geometric and photometric information of 3D point clouds from RGB-D camera and integrate those information into efficient descriptors. GPLF shows robust discriminative performance regardless of characteristics such as shapes or appearances of objects in cluttered scenes. The experimental results show how well the proposed approach classifies and identify objects. The performance of pose estimation is robust and stable enough for the robot to manipulate objects. We also compare the proposed approach with previous approaches that use partial information of objects with a representative large-scale RGB-D object dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用几何和光度局部特征的三维点云鲁棒描述符
为了熟练地处理各种物体,机器人强烈需要具有鲁棒感知能力。在本文中,我们提出了一种使用三维特征描述符来识别物体并估计其六自由度姿态的新方法,称为几何和光度局部特征(GPLF)。该描述符利用RGB-D相机的三维点云的几何和光度信息,并将这些信息整合到有效的描述符中。在混乱的场景中,无论物体的形状或外观等特征如何,GPLF都表现出鲁棒的判别性能。实验结果表明,该方法对目标的分类和识别效果良好。姿态估计的鲁棒性和稳定性足以满足机器人对目标的操纵。我们还将所提出的方法与之前使用具有代表性的大规模RGB-D对象数据集的对象部分信息的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
YES - YEt another object segmentation: Exploiting camera movement Scan registration with multi-scale k-means normal distributions transform Visual servoing using the sum of conditional variance Parallel sampling-based motion planning with superlinear speedup Tactile sensor based varying contact point manipulation strategy for dexterous robot hand manipulating unknown objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1