The nonlocal parameter for three-dimensional nonlocal elasticity analyses of square graphene sheets: An exact buckling analysis

A. Naderi
{"title":"The nonlocal parameter for three-dimensional nonlocal elasticity analyses of square graphene sheets: An exact buckling analysis","authors":"A. Naderi","doi":"10.1177/23977914211029824","DOIUrl":null,"url":null,"abstract":"This paper studies buckling problem of square nano-plates under uniform biaxial pressure through using three-dimensional nonlocal elasticity theory. Equations of stability are solved analytically for square nano-plates with simple supports using a Navier-type method. Critical buckling stress is presented for nano square plates with different thickness-length and nonlocal parameter-length ratios. The critical buckling stress is also reported using different local (classical) and nonlocal two-dimensional plate theories constructed essentially based on some simplifying assumptions. Comparison of the results of two-dimensional and three-dimensional theories for both local and nonlocal cases shows that the nonlocal two-dimensional plate theories are not as accurate as the local two-dimensional ones. This issue however reveals importance of the nonlocal three-dimensional solutions. Finally, through comparison of the numerical results with those obtained from molecular dynamic simulations, the value of the nonlocal parameter is calibrated for square graphene sheets. This parameter can be also used for the other nonlocal three-dimensional mechanical analyses of square graphene sheets to find accurate solutions.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"53 1","pages":"41 - 48"},"PeriodicalIF":4.2000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914211029824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies buckling problem of square nano-plates under uniform biaxial pressure through using three-dimensional nonlocal elasticity theory. Equations of stability are solved analytically for square nano-plates with simple supports using a Navier-type method. Critical buckling stress is presented for nano square plates with different thickness-length and nonlocal parameter-length ratios. The critical buckling stress is also reported using different local (classical) and nonlocal two-dimensional plate theories constructed essentially based on some simplifying assumptions. Comparison of the results of two-dimensional and three-dimensional theories for both local and nonlocal cases shows that the nonlocal two-dimensional plate theories are not as accurate as the local two-dimensional ones. This issue however reveals importance of the nonlocal three-dimensional solutions. Finally, through comparison of the numerical results with those obtained from molecular dynamic simulations, the value of the nonlocal parameter is calibrated for square graphene sheets. This parameter can be also used for the other nonlocal three-dimensional mechanical analyses of square graphene sheets to find accurate solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
方形石墨烯片三维非局部弹性分析的非局部参数:精确屈曲分析
本文利用三维非局部弹性理论研究了方形纳米板在双轴均匀压力下的屈曲问题。采用navier型方法解析求解了具有简单支撑的方形纳米板的稳定性方程。给出了不同厚度-长度和非局部参数-长度比的纳米方形板的临界屈曲应力。用不同的局部(经典)和非局部二维板理论也报道了临界屈曲应力,这些理论基本上是基于一些简化的假设。将二维和三维理论在局部和非局部情况下的计算结果进行比较,结果表明非局部二维板理论的计算精度不如局部二维板理论。然而,这个问题揭示了非局部三维解的重要性。最后,通过与分子动力学模拟结果的比较,对方形石墨烯片的非局部参数进行了标定。该参数也可用于方形石墨烯片的其他非局部三维力学分析,以找到准确的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
期刊最新文献
Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder Optimizing compressive mechanical properties and water absorption of polycaprolactone/nano-hydroxyapatite composite scaffolds by 3D printing based on fused deposition modeling Effectiveness of silver-magnesium oxide-water hybrid nanofluid in Couette channel Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites Adsorption investigation of a composite of metal-organic framework and polyethylene oxide hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1