{"title":"Computational psychophysiology based research methodology for mental health","authors":"Bin Hu","doi":"10.1109/BIBM.2016.7822474","DOIUrl":null,"url":null,"abstract":"Computational psychophysiology is a new direction that broadens the field of psychophysiology by allowing for the identification and integration of multimodal signals to test specific models of mental states and psychological processes. Additionally, such approaches allows for the extraction of multiple signals from large-scale multidimensional data, with a greater ability to differentiate signals embedded in background noise. Further, these approaches allows for a better understanding of the complex psychophysiological processes underlying brain disorders such as autism spectrum disorder, depression, and anxiety. Given the widely acknowledged limitations of psychiatric nosology and the limited treatment options available, new computational models may provide the basis for a multidimensional diagnostic system and potentially new treatment approaches.","PeriodicalId":73283,"journal":{"name":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","volume":"119 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Computational psychophysiology is a new direction that broadens the field of psychophysiology by allowing for the identification and integration of multimodal signals to test specific models of mental states and psychological processes. Additionally, such approaches allows for the extraction of multiple signals from large-scale multidimensional data, with a greater ability to differentiate signals embedded in background noise. Further, these approaches allows for a better understanding of the complex psychophysiological processes underlying brain disorders such as autism spectrum disorder, depression, and anxiety. Given the widely acknowledged limitations of psychiatric nosology and the limited treatment options available, new computational models may provide the basis for a multidimensional diagnostic system and potentially new treatment approaches.