{"title":"Object co-labeling in multiple images","authors":"Xi Chen, Arpit Jain, L. Davis","doi":"10.1109/WACV.2014.6836031","DOIUrl":null,"url":null,"abstract":"We introduce a new problem called object co-labeling where the goal is to jointly annotate multiple images of the same scene which do not have temporal consistency. We present an adaptive framework for joint segmentation and recognition to solve this problem. We propose an objective function that considers not only appearance but also appearance and context consistency across images of the scene. A relaxed form of the cost function is minimized using an efficient quadratic programming solver. Our approach improves labeling performance compared to labeling each image individually. We also show the application of our co-labeling framework to other recognition problems such as label propagation in videos and object recognition in similar scenes. Experimental results demonstrates the efficacy of our approach.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"29 1","pages":"721-728"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We introduce a new problem called object co-labeling where the goal is to jointly annotate multiple images of the same scene which do not have temporal consistency. We present an adaptive framework for joint segmentation and recognition to solve this problem. We propose an objective function that considers not only appearance but also appearance and context consistency across images of the scene. A relaxed form of the cost function is minimized using an efficient quadratic programming solver. Our approach improves labeling performance compared to labeling each image individually. We also show the application of our co-labeling framework to other recognition problems such as label propagation in videos and object recognition in similar scenes. Experimental results demonstrates the efficacy of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多个图像中进行对象共标记
我们引入了一个新的问题,称为对象共标注,其目标是共同标注同一场景中不具有时间一致性的多幅图像。为了解决这一问题,我们提出了一种自适应的联合分割和识别框架。我们提出了一个目标函数,不仅考虑外观,而且考虑场景图像的外观和上下文一致性。使用有效的二次规划求解器最小化代价函数的松弛形式。与单独标记每个图像相比,我们的方法提高了标记性能。我们还展示了我们的共同标记框架在其他识别问题上的应用,如视频中的标签传播和相似场景中的物体识别。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1