Thermal free-surface immersed-boundary lattice Boltzmann method for free surface flows with a liquid-solid phase transition

Ayurzana Badarch, T. Hosoyamada
{"title":"Thermal free-surface immersed-boundary lattice Boltzmann method for free surface flows with a liquid-solid phase transition","authors":"Ayurzana Badarch, T. Hosoyamada","doi":"10.5564/jasea.v3i1.2475","DOIUrl":null,"url":null,"abstract":"This paper reports on the progress of the liquid-solid phase transition modeling of water in open channel flow by using the lattice Boltzmann method with the immersed boundary modification. The phase transition in a fluid flow has a moving interface between the liquid and solid state, which leads complicated treatments in existing numerical models. By applying the immersed boundary modification in the lattice Boltzmann method and the non-iterative enthalpy approach for the separation of the states, the moving boundary of the melting or solidification front is solved without any difficulty. The ice bed and the submerged ice cover under dynamic flow conditions is exercised to demonstrate the model performance. The model is extremely suitable in the formulation in terms of its simple and compact framework extendable to any dimensions.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"35 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5564/jasea.v3i1.2475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports on the progress of the liquid-solid phase transition modeling of water in open channel flow by using the lattice Boltzmann method with the immersed boundary modification. The phase transition in a fluid flow has a moving interface between the liquid and solid state, which leads complicated treatments in existing numerical models. By applying the immersed boundary modification in the lattice Boltzmann method and the non-iterative enthalpy approach for the separation of the states, the moving boundary of the melting or solidification front is solved without any difficulty. The ice bed and the submerged ice cover under dynamic flow conditions is exercised to demonstrate the model performance. The model is extremely suitable in the formulation in terms of its simple and compact framework extendable to any dimensions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热自由表面浸没边界晶格玻尔兹曼法求解液固相变的自由表面流动
本文报道了用浸入式边界修正的晶格玻尔兹曼法模拟明渠水流中水的液固相变的研究进展。流体流动中的相变在液固之间有一个移动的界面,这使得现有的数值模型处理起来非常复杂。采用点阵玻尔兹曼法中的浸入式边界修正和状态分离的非迭代焓法,可以很容易地求解熔点或凝固点的移动边界。以动态流动条件下的冰床和水下冰盖为例,验证了模型的性能。该模型的框架简单紧凑,可扩展到任何维度,因此在表述中非常适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ON HYBRID CURVES Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault THE ADSORPTION PERFORMANCE and CHARACTERIZATION of THE ACTIVATED CARBON PRODUCED FROM PEPPER STALKS A COMPARATIVE ANALYSIS OF ENSEMBLE LEARNING METHODS ON SOCIAL MEDIA ACCOUNT DETECTION Streamlining Square Root Matrix Function Computation with Restarted Heavy Ball Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1