Experimental investigations and multi criteria optimization during machining of A356/WC MMCs using EDM

IF 1.4 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Decision Science Letters Pub Date : 2022-01-01 DOI:10.5267/j.dsl.2021.12.001
Ashutosh Kumar Singh, K. Kumar, K. G. Sundari, R. Ranjan, B. Surekha
{"title":"Experimental investigations and multi criteria optimization during machining of A356/WC MMCs using EDM","authors":"Ashutosh Kumar Singh, K. Kumar, K. G. Sundari, R. Ranjan, B. Surekha","doi":"10.5267/j.dsl.2021.12.001","DOIUrl":null,"url":null,"abstract":"In the current paper, the authors are intended to manufacture the aluminum based metal matrix composite (MMC) employing the stir casting process. Further, the fabricated composite sample is investigated for machining characteristics during the die sink electrical discharge machining process (EDM). EDM is most commonly employed to satisfy the special needs of industry such as developing deep holes and complex contours from high strength materials such as composites, alloys, smart materials, and functionally graded materials. In the current study A356 and 4%, tungsten carbide (WC) powder are considered as matrix and strengthening materials respectively to fabricate the MMCs. During the machining activity, the input factors like discharge current (Ip), Voltage (Vg), Pulse On-Time (Ton), and flushing pressure (P) are optimized for achieving optimum surface roughness (SR), Tool Wear Rate (TWR) and Material Removal Rate (MRR). To estimate the ideal set of process factors grey regression analysis (GRA) is used. From the results, it was observed that the GRA is found to perform better than the RSM.","PeriodicalId":38141,"journal":{"name":"Decision Science Letters","volume":"42 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.dsl.2021.12.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

In the current paper, the authors are intended to manufacture the aluminum based metal matrix composite (MMC) employing the stir casting process. Further, the fabricated composite sample is investigated for machining characteristics during the die sink electrical discharge machining process (EDM). EDM is most commonly employed to satisfy the special needs of industry such as developing deep holes and complex contours from high strength materials such as composites, alloys, smart materials, and functionally graded materials. In the current study A356 and 4%, tungsten carbide (WC) powder are considered as matrix and strengthening materials respectively to fabricate the MMCs. During the machining activity, the input factors like discharge current (Ip), Voltage (Vg), Pulse On-Time (Ton), and flushing pressure (P) are optimized for achieving optimum surface roughness (SR), Tool Wear Rate (TWR) and Material Removal Rate (MRR). To estimate the ideal set of process factors grey regression analysis (GRA) is used. From the results, it was observed that the GRA is found to perform better than the RSM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电火花加工A356/WC mmc的试验研究及多准则优化
本文采用搅拌铸造工艺制备铝基金属基复合材料(MMC)。进一步研究了所制备的复合材料样品在模槽放电加工过程中的加工特性。电火花加工最常用于满足工业的特殊需求,例如从复合材料,合金,智能材料和功能梯度材料等高强度材料中开发深孔和复杂轮廓。本研究分别以A356和4%的碳化钨粉为基体和增强材料制备mmc。在加工过程中,对放电电流(Ip)、电压(Vg)、脉冲启动时间(Ton)和冲洗压力(P)等输入因素进行优化,以实现最佳表面粗糙度(SR)、刀具磨损率(TWR)和材料去除率(MRR)。采用灰色回归分析(GRA)来估计理想的过程因子集。从结果中可以看出,GRA的性能优于RSM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Decision Science Letters
Decision Science Letters Decision Sciences-Decision Sciences (all)
CiteScore
3.40
自引率
5.30%
发文量
49
审稿时长
20 weeks
期刊最新文献
Time series prediction of novel coronavirus COVID-19 data in west Java using Gaussian processes and least median squared linear regression Determinants of woodcraft family business success Analytical evaluation of big data applications in E-commerce: A mixed method approach A two-stage SEM-artificial neural network analysis of the organizational effects of Internet of things adoption in auditing firms A novel crossover operator for genetic algorithm: Stas crossover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1