S. Ortega, M. Halicek, H. Fabelo, E. Quevedo, B. Fei, G. Callicó
{"title":"Information Extraction Techniques in Hyperspectral Imaging Biomedical Applications","authors":"S. Ortega, M. Halicek, H. Fabelo, E. Quevedo, B. Fei, G. Callicó","doi":"10.5772/intechopen.93960","DOIUrl":null,"url":null,"abstract":"Hyperspectral imaging (HSI) is a technology able to measure information about the spectral reflectance or transmission of light from the surface. The spectral data, usually within the ultraviolet and infrared regions of the electromagnetic spectrum, provide information about the interaction between light and different materials within the image. This fact enables the identification of different materials based on such spectral information. In recent years, this technology is being actively explored for clinical applications. One of the most relevant challenges in medical HSI is the information extraction, where image processing methods are used to extract useful information for disease detection and diagnosis. In this chapter, we provide an overview of the information extraction techniques for HSI. First, we introduce the background of HSI, and the main motivations of its usage for medical applications. Second, we present information extraction techniques based on both light propagation models within tissue and machine learning approaches. Then, we survey the usage of such information extraction techniques in HSI biomedical research applications. Finally, we discuss the main advantages and disadvantages of the most commonly used image processing approaches and the current challenges in HSI information extraction techniques in clinical applications.","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"28 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multimedia Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5772/intechopen.93960","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Hyperspectral imaging (HSI) is a technology able to measure information about the spectral reflectance or transmission of light from the surface. The spectral data, usually within the ultraviolet and infrared regions of the electromagnetic spectrum, provide information about the interaction between light and different materials within the image. This fact enables the identification of different materials based on such spectral information. In recent years, this technology is being actively explored for clinical applications. One of the most relevant challenges in medical HSI is the information extraction, where image processing methods are used to extract useful information for disease detection and diagnosis. In this chapter, we provide an overview of the information extraction techniques for HSI. First, we introduce the background of HSI, and the main motivations of its usage for medical applications. Second, we present information extraction techniques based on both light propagation models within tissue and machine learning approaches. Then, we survey the usage of such information extraction techniques in HSI biomedical research applications. Finally, we discuss the main advantages and disadvantages of the most commonly used image processing approaches and the current challenges in HSI information extraction techniques in clinical applications.
期刊介绍:
Aims and Scope
The International Journal of Multimedia Information Retrieval (IJMIR) is a scholarly archival journal publishing original, peer-reviewed research contributions. Its editorial board strives to present the most important research results in areas within the field of multimedia information retrieval. Core areas include exploration, search, and mining in general collections of multimedia consisting of information from the WWW to scientific imaging to personal archives. Comprehensive review and survey papers that offer up new insights, and lay the foundations for further exploratory and experimental work, are also relevant.
Relevant topics include
Image and video retrieval - theory, algorithms, and systems
Social media interaction and retrieval - collaborative filtering, social voting and ranking
Music and audio retrieval - theory, algorithms, and systems
Scientific and Bio-imaging - MRI, X-ray, ultrasound imaging analysis and retrieval
Semantic learning - visual concept detection, object recognition, and tag learning
Exploration of media archives - browsing, experiential computing
Interfaces - multimedia exploration, visualization, query and retrieval
Multimedia mining - life logs, WWW media mining, pervasive media analysis
Interactive search - interactive learning and relevance feedback in multimedia retrieval
Distributed and high performance media search - efficient and very large scale search
Applications - preserving cultural heritage, 3D graphics models, etc.
Editorial Policies:
We aim for a fast decision time (less than 4 months for the initial decision)
There are no page charges in IJMIR.
Papers are published on line in advance of print publication.
Academic, industrial researchers, and practitioners involved with multimedia search, exploration, and mining will find IJMIR to be an essential source for important results in the field.