Kimberly A. Clevenger, J. Brønd, D. Arvidsson, Alexander Montoye, K. Mackintosh, M. McNarry, K. Pfeiffer
{"title":"Impact of ActiGraph Sampling Rate and Intermonitor Comparability on Measures of Physical Activity in Adults","authors":"Kimberly A. Clevenger, J. Brønd, D. Arvidsson, Alexander Montoye, K. Mackintosh, M. McNarry, K. Pfeiffer","doi":"10.1123/jmpb.2021-0016","DOIUrl":null,"url":null,"abstract":"Background: ActiGraph is a commonly used, research-grade accelerometer brand, but there is little information regarding intermonitor comparability of newer models. In addition, while sampling rate has been shown to influence accelerometer metrics, its influence on measures of free-living physical activity has not been directly studied. Purpose: To examine differences in physical activity metrics due to intermonitor variability and chosen sampling rate. Methods: Adults (n = 20) wore two hip-worn ActiGraph wGT3X-BT monitors for 1 week, with one accelerometer sampling at 30 Hz and the other at 100 Hz, which was downsampled to 30 Hz. Activity intensity was classified using vector magnitude, Euclidean Norm Minus One (ENMO), and mean amplitude deviation (MAD) cut points. Equivalence testing compared outcomes. Results: There was a lack of intermonitor equivalence for ENMO, time in sedentary/light- or moderate-intensity activity according to ENMO cut points, and time in moderate-intensity activity according to MAD cut points. Between sampling rates, differences existed for time in moderate-intensity activity according to vector magnitude, ENMO, and MAD cut points, and time in sedentary/light-intensity activity according to ENMO cut points. While mean differences were small (0.1–1.7 percentage points), this would equate to differences in moderate-to vigorous-intensity activity over a 10-hr wear day of 3.6 (MAD) to 10.8 (ENMO) min/day for intermonitor comparisons or 3.6 (vector magnitude) to 5.4 (ENMO) min/day for sampling rate. Conclusions: Epoch-level intermonitor differences were larger than differences due to sampling rate, but both may impact outcomes such as time spent in each activity intensity. ENMO was the least comparable metric between monitors or sampling rates.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for the measurement of physical behaviour","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/jmpb.2021-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Background: ActiGraph is a commonly used, research-grade accelerometer brand, but there is little information regarding intermonitor comparability of newer models. In addition, while sampling rate has been shown to influence accelerometer metrics, its influence on measures of free-living physical activity has not been directly studied. Purpose: To examine differences in physical activity metrics due to intermonitor variability and chosen sampling rate. Methods: Adults (n = 20) wore two hip-worn ActiGraph wGT3X-BT monitors for 1 week, with one accelerometer sampling at 30 Hz and the other at 100 Hz, which was downsampled to 30 Hz. Activity intensity was classified using vector magnitude, Euclidean Norm Minus One (ENMO), and mean amplitude deviation (MAD) cut points. Equivalence testing compared outcomes. Results: There was a lack of intermonitor equivalence for ENMO, time in sedentary/light- or moderate-intensity activity according to ENMO cut points, and time in moderate-intensity activity according to MAD cut points. Between sampling rates, differences existed for time in moderate-intensity activity according to vector magnitude, ENMO, and MAD cut points, and time in sedentary/light-intensity activity according to ENMO cut points. While mean differences were small (0.1–1.7 percentage points), this would equate to differences in moderate-to vigorous-intensity activity over a 10-hr wear day of 3.6 (MAD) to 10.8 (ENMO) min/day for intermonitor comparisons or 3.6 (vector magnitude) to 5.4 (ENMO) min/day for sampling rate. Conclusions: Epoch-level intermonitor differences were larger than differences due to sampling rate, but both may impact outcomes such as time spent in each activity intensity. ENMO was the least comparable metric between monitors or sampling rates.