Adithya Kumar, Iyswarya Narayanan, T. Zhu, A. Sivasubramaniam
{"title":"The Fast and The Frugal: Tail Latency Aware Provisioning for Coping with Load Variations","authors":"Adithya Kumar, Iyswarya Narayanan, T. Zhu, A. Sivasubramaniam","doi":"10.1145/3366423.3380117","DOIUrl":null,"url":null,"abstract":"Small and medium sized enterprises use the cloud for running online, user-facing, tail latency sensitive applications with well-defined fixed monthly budgets. For these applications, adequate system capacity must be provisioned to extract maximal performance despite the challenges of uncertainties in load and request-sizes. In this paper, we address the problem of capacity provisioning under fixed budget constraints with the goal of minimizing tail latency. To tackle this problem, we propose building systems using a heterogeneous mix of low latency expensive resources and cheap resources that provide high throughput per dollar. As load changes through the day, we use more faster resources to reduce tail latency during low load periods and more cheaper resources to handle the high load periods. To achieve these tail latency benefits, we introduce novel heterogeneity-aware scheduling and autoscaling algorithms that are designed for minimizing tail latency. Using software prototypes and by running experiments on the public cloud, we show that our approach can outperform existing capacity provisioning systems by reducing the tail latency by as much as 45% under fixed-budget settings.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Small and medium sized enterprises use the cloud for running online, user-facing, tail latency sensitive applications with well-defined fixed monthly budgets. For these applications, adequate system capacity must be provisioned to extract maximal performance despite the challenges of uncertainties in load and request-sizes. In this paper, we address the problem of capacity provisioning under fixed budget constraints with the goal of minimizing tail latency. To tackle this problem, we propose building systems using a heterogeneous mix of low latency expensive resources and cheap resources that provide high throughput per dollar. As load changes through the day, we use more faster resources to reduce tail latency during low load periods and more cheaper resources to handle the high load periods. To achieve these tail latency benefits, we introduce novel heterogeneity-aware scheduling and autoscaling algorithms that are designed for minimizing tail latency. Using software prototypes and by running experiments on the public cloud, we show that our approach can outperform existing capacity provisioning systems by reducing the tail latency by as much as 45% under fixed-budget settings.