M. Fattahi, N. Eskandari, F. Sotoodehnejadnematalahi, V. Shaygannejad, K. Mohammad
{"title":"Comparison of The Expression of miR-326 between Interferon beta Responders and Non-Responders in Relapsing-Remitting Multiple Sclerosis","authors":"M. Fattahi, N. Eskandari, F. Sotoodehnejadnematalahi, V. Shaygannejad, K. Mohammad","doi":"10.22074/cellj.2020.6486","DOIUrl":null,"url":null,"abstract":"Objective Multiple sclerosis (MS) is an inflammatory disease resulting in demyelination of the central nervous system (CNS). T helper 17 (Th17) subset protects the human body against pathogens and induces neuroinflammation, which leads to neurodegeneration. MicroRNAs (miRNAs) are a specific class of small (~22 nt) non-coding RNAs that act as post-transcriptional regulators. The expression of the miR-326 is highly associated with the pathogenesis of MS disease in patients through the promotion of Th17 development. Recently, studies showed that disease-modifying therapies (DMTs) could balance the dysregulation of miRNAs in the immune cells of patients with relapsing-remitting MS (RRMS). Interferon-beta (IFN-β) has emerged as one of the most common drugs for the treatment of RR-MS patients. The purpose of this study was to evaluate the expression of the miR-326 in RRMS patients who were responders and non- responders to IFN-β treatment. Materials and Methods In this cross-sectional study, a total of 70 patients (35 responders and 35 non-responders) were enrolled. We analyzed the expression of the miR-326 in peripheral blood mononuclear cells (PBMCs) of RRMS patients at least one year after the initiation of IFN-β therapy. Real-time polymerase chain reaction (RT-PCR) was applied to measure the expression of the miR-326. Results The results showed no substantial change in the expression of the miR-326 between responders and non- responders concerning the treatment with IFN-β. Although the expression of the miR-326 was slightly reduced in IFN-β-responders compared with IFN-β-non-responders; however, the reduction of the miR-326 was not statistically significant. Conclusion Overall, since IFN-β doesn’t normalize abnormal expression of miR-326, this might suggest that IFN-β affects Th17 development through epigenetic mechanisms other than miR-326 regulation.","PeriodicalId":9692,"journal":{"name":"Cell Journal (Yakhteh)","volume":"22 1","pages":"92 - 96"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Journal (Yakhteh)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22074/cellj.2020.6486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Objective Multiple sclerosis (MS) is an inflammatory disease resulting in demyelination of the central nervous system (CNS). T helper 17 (Th17) subset protects the human body against pathogens and induces neuroinflammation, which leads to neurodegeneration. MicroRNAs (miRNAs) are a specific class of small (~22 nt) non-coding RNAs that act as post-transcriptional regulators. The expression of the miR-326 is highly associated with the pathogenesis of MS disease in patients through the promotion of Th17 development. Recently, studies showed that disease-modifying therapies (DMTs) could balance the dysregulation of miRNAs in the immune cells of patients with relapsing-remitting MS (RRMS). Interferon-beta (IFN-β) has emerged as one of the most common drugs for the treatment of RR-MS patients. The purpose of this study was to evaluate the expression of the miR-326 in RRMS patients who were responders and non- responders to IFN-β treatment. Materials and Methods In this cross-sectional study, a total of 70 patients (35 responders and 35 non-responders) were enrolled. We analyzed the expression of the miR-326 in peripheral blood mononuclear cells (PBMCs) of RRMS patients at least one year after the initiation of IFN-β therapy. Real-time polymerase chain reaction (RT-PCR) was applied to measure the expression of the miR-326. Results The results showed no substantial change in the expression of the miR-326 between responders and non- responders concerning the treatment with IFN-β. Although the expression of the miR-326 was slightly reduced in IFN-β-responders compared with IFN-β-non-responders; however, the reduction of the miR-326 was not statistically significant. Conclusion Overall, since IFN-β doesn’t normalize abnormal expression of miR-326, this might suggest that IFN-β affects Th17 development through epigenetic mechanisms other than miR-326 regulation.