A Multiresolution Approach to Recommender Systems

Gilbert Badaro, Hazem M. Hajj, A. Haddad, W. El-Hajj, K. Shaban
{"title":"A Multiresolution Approach to Recommender Systems","authors":"Gilbert Badaro, Hazem M. Hajj, A. Haddad, W. El-Hajj, K. Shaban","doi":"10.1145/2659480.2659501","DOIUrl":null,"url":null,"abstract":"Recommender systems face performance challenges when dealing with sparse data. This paper addresses these challenges and proposes the use of Harmonic Analysis. The method provides a novel approach to the user-item matrix and extracts the interplay between users and items at multiple resolution levels. New affinity matrices are defined to measure similarities among users, among items, and across items and users. Furthermore, the similarities are assessed at multiple levels of granularity allowing individual and group level similarities. These affinity matrices thus produce multiresolution groupings of items and users, and in turn lead to higher accuracy in matching similar context for ratings, and more accurate prediction of new ratings. Evaluation results show superiority of the approach compared to state of the art solutions.","PeriodicalId":74521,"journal":{"name":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","volume":"85 1","pages":"9:1-9:5"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2659480.2659501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Recommender systems face performance challenges when dealing with sparse data. This paper addresses these challenges and proposes the use of Harmonic Analysis. The method provides a novel approach to the user-item matrix and extracts the interplay between users and items at multiple resolution levels. New affinity matrices are defined to measure similarities among users, among items, and across items and users. Furthermore, the similarities are assessed at multiple levels of granularity allowing individual and group level similarities. These affinity matrices thus produce multiresolution groupings of items and users, and in turn lead to higher accuracy in matching similar context for ratings, and more accurate prediction of new ratings. Evaluation results show superiority of the approach compared to state of the art solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推荐系统的多分辨率方法
当处理稀疏数据时,推荐系统面临性能挑战。本文解决了这些挑战,并提出了谐波分析的使用。该方法为用户-物品矩阵提供了一种新颖的方法,并在多个分辨率级别上提取用户和物品之间的相互作用。定义了新的关联矩阵来度量用户之间、项目之间以及项目和用户之间的相似性。此外,在多个粒度级别上评估相似性,从而允许个人和组级别的相似性。因此,这些亲和矩阵产生了项目和用户的多分辨率分组,从而在匹配相似的评级上下文时具有更高的准确性,并对新评级进行更准确的预测。评价结果表明,与目前的解决方案相比,该方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An ensemble transformer-based model for Arabic sentiment analysis Homophily and polarization on political twitter during the 2017 Norwegian election Perceptible sentiment analysis of students' WhatsApp group chats in valence, arousal, and dominance space A performant deep learning model for sentiment analysis of climate change DEES: a real-time system for event extraction from disaster-related web text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1