M. Dubrovsky, Morgan G. Blevins, S. Boriskina, Diedrik Vermeulen SiPhox Inc., Cambridge, Ma, Usa, M. I. O. Technology
{"title":"High Contrast Probe Cleavage Detection","authors":"M. Dubrovsky, Morgan G. Blevins, S. Boriskina, Diedrik Vermeulen SiPhox Inc., Cambridge, Ma, Usa, M. I. O. Technology","doi":"10.1364/FIO.2020.JTU7C.3","DOIUrl":null,"url":null,"abstract":"Photonic biosensors that use optical resonances to amplify biological signals associated with the adsorption of low-index biological markers offer high-sensitivity detection capability, real-time readout, and scalable low-cost fabrication. However, they lack inherent target specificity and can be sensitive to temperature variations and other noise sources. In this letter, we introduce a concept of the High Contrast Probe Cleavage Detection (HCPCD) mechanism, which makes use of the dramatic optical signal amplification caused by cleavage of large numbers of high-contrast nanoparticle labels instead of the adsorption of low-index biological molecules. We illustrate numerically the HCPCD detection mechanism with an example of a silicon ring resonator as an optical transducer with gold and silicon nanoparticles as high-contrast labels. Simulations show that it is possible to detect a single cleavage-event by monitoring spectral shifts of micro-ring resonances. Furthermore, detection specificity and signal amplification can be achieved through the use of collateral nucleic acid cleavage caused by enzymes such as CAS12a and CAS13 after binding to a target DNA/RNA sequence.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/FIO.2020.JTU7C.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Photonic biosensors that use optical resonances to amplify biological signals associated with the adsorption of low-index biological markers offer high-sensitivity detection capability, real-time readout, and scalable low-cost fabrication. However, they lack inherent target specificity and can be sensitive to temperature variations and other noise sources. In this letter, we introduce a concept of the High Contrast Probe Cleavage Detection (HCPCD) mechanism, which makes use of the dramatic optical signal amplification caused by cleavage of large numbers of high-contrast nanoparticle labels instead of the adsorption of low-index biological molecules. We illustrate numerically the HCPCD detection mechanism with an example of a silicon ring resonator as an optical transducer with gold and silicon nanoparticles as high-contrast labels. Simulations show that it is possible to detect a single cleavage-event by monitoring spectral shifts of micro-ring resonances. Furthermore, detection specificity and signal amplification can be achieved through the use of collateral nucleic acid cleavage caused by enzymes such as CAS12a and CAS13 after binding to a target DNA/RNA sequence.