{"title":"HSP90 as an emerging barrier to immune checkpoint blockade therapy","authors":"D. Tang, Rui Kang","doi":"10.18632/oncoscience.554","DOIUrl":null,"url":null,"abstract":"Immunotherapy, especially the use of immune checkpoint inhibitors, has improved overall survival in cancer patients. However, a large proportion of patients initially do not respond to treatment or relapse after a period of response. Heat shock protein 90 (HSP90) is a conserved molecular chaperone that promotes the maturation and folding of substrate proteins involved in many different cellular pathways. Our recent drug screen and functional assay identified HSP90 as a universal control of the protein stability of nuclear transcription factor STAT1 in a variety of different cancer cells, thereby promoting subsequent gene expression of immune checkpoint molecules (IDO1 and PD-L1). In vivo, we used different mouse models of pancreatic cancer and demonstrated that targeting HSP90 enhanced the efficacy of PD-1 blockade therapy. These findings establish HSP90 as a targetable vulnerability in immune therapy.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"1 1","pages":"20 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Immunotherapy, especially the use of immune checkpoint inhibitors, has improved overall survival in cancer patients. However, a large proportion of patients initially do not respond to treatment or relapse after a period of response. Heat shock protein 90 (HSP90) is a conserved molecular chaperone that promotes the maturation and folding of substrate proteins involved in many different cellular pathways. Our recent drug screen and functional assay identified HSP90 as a universal control of the protein stability of nuclear transcription factor STAT1 in a variety of different cancer cells, thereby promoting subsequent gene expression of immune checkpoint molecules (IDO1 and PD-L1). In vivo, we used different mouse models of pancreatic cancer and demonstrated that targeting HSP90 enhanced the efficacy of PD-1 blockade therapy. These findings establish HSP90 as a targetable vulnerability in immune therapy.