{"title":"Stackelberg-Nash null controllability of heat equation with general dynamic boundary conditions","authors":"I. Boutaayamou, L. Maniar, O. Oukdach","doi":"10.3934/eect.2021044","DOIUrl":null,"url":null,"abstract":"This paper deals with the hierarchical control of the anisotropic heat equation with dynamic boundary conditions and drift terms. We use the Stackelberg-Nash strategy with one leader and two followers. To each fixed leader, we find a Nash equilibrium corresponding to a bi-objective optimal control problem for the followers. Then, by some new Carleman estimates, we prove a null controllability result.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"27 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2021044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
This paper deals with the hierarchical control of the anisotropic heat equation with dynamic boundary conditions and drift terms. We use the Stackelberg-Nash strategy with one leader and two followers. To each fixed leader, we find a Nash equilibrium corresponding to a bi-objective optimal control problem for the followers. Then, by some new Carleman estimates, we prove a null controllability result.
期刊介绍:
EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include:
* Modeling of physical systems as infinite-dimensional processes
* Direct problems such as existence, regularity and well-posedness
* Stability, long-time behavior and associated dynamical attractors
* Indirect problems such as exact controllability, reachability theory and inverse problems
* Optimization - including shape optimization - optimal control, game theory and calculus of variations
* Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s)
* Applications of the theory to physics, chemistry, engineering, economics, medicine and biology