Mechanical Joining with Aluminum Part by 3D Printing of Polylactic Acid and Acrylonitrile-Butadiene-Styrene Parts for Fabrication of Multi-Material Parts
{"title":"Mechanical Joining with Aluminum Part by 3D Printing of Polylactic Acid and Acrylonitrile-Butadiene-Styrene Parts for Fabrication of Multi-Material Parts","authors":"Y. Nakagawa, Ayumu Abe, M. Yoshino","doi":"10.20965/ijat.2022.p0615","DOIUrl":null,"url":null,"abstract":"In this study, the manufacturing process of multi-material parts by simultaneous mechanical joining and three-dimensional (3D) printing of plastic parts was developed. In this process, a metal part with a hole sets on a lower 3D printed plastic part having a projection, and an upper plastic part is deposited on the metal part, while caulking is formed by a 3D printer. The effect of 3D printing conditions and a dimension of caulking on the joint strength was evaluated through the tensile shear and three-point bending tests. It was observed that squashing the projection while printing the upper part effectively improved the strength. The strength decreased as the clearance increased, whereas the shape of the projection was changed to a cylinder and a cone to ease positioning while preventing a decrease in the strength.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"120 1","pages":"615-623"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2022.p0615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the manufacturing process of multi-material parts by simultaneous mechanical joining and three-dimensional (3D) printing of plastic parts was developed. In this process, a metal part with a hole sets on a lower 3D printed plastic part having a projection, and an upper plastic part is deposited on the metal part, while caulking is formed by a 3D printer. The effect of 3D printing conditions and a dimension of caulking on the joint strength was evaluated through the tensile shear and three-point bending tests. It was observed that squashing the projection while printing the upper part effectively improved the strength. The strength decreased as the clearance increased, whereas the shape of the projection was changed to a cylinder and a cone to ease positioning while preventing a decrease in the strength.