Rydberg-to-valence evolution in excited state molecular dynamics

IF 2.5 2区 化学 Q3 CHEMISTRY, PHYSICAL International Reviews in Physical Chemistry Pub Date : 2020-09-18 DOI:10.1080/0144235X.2020.1815389
M. Paterson, D. Townsend
{"title":"Rydberg-to-valence evolution in excited state molecular dynamics","authors":"M. Paterson, D. Townsend","doi":"10.1080/0144235X.2020.1815389","DOIUrl":null,"url":null,"abstract":"We present an overview of experimental and theoretical investigations exploring the dynamical evolution of Rydberg-to-valence character in the electronically excited states of small polyatomic molecules. Time-resolved photoelectron imaging (TRPEI), in conjunction with high-level quantum chemistry calculations, permits detailed insight into the non-adiabatic processes operating in these systems and we review several case studies drawn from our own work in this area over the last few years. Electronically excited Rydberg states that develop significant valence character along specific molecular coordinates provide potentially important pathways for the rapid and efficient redistribution of excess energy following ultraviolet absorption. As such, there is considerable interest in developing better understanding of role of these states play within a broad range of different photochemical environments. A central theme of this review considers the way in which key energy – and angle-resolved observables in TRPEI measurements are influenced by different aspects of transitory Rydberg-to-valence behaviour. Several themes are discussed within a coherent narrative, drawing on experimental and theoretical findings in a selected series of small organic species containing nitrogen heteroatoms. Critically, many of the effects we highlight will also be generalisable to related studies interrogating non-adiabatic processes within a much broader range of molecular systems.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews in Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/0144235X.2020.1815389","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

Abstract

We present an overview of experimental and theoretical investigations exploring the dynamical evolution of Rydberg-to-valence character in the electronically excited states of small polyatomic molecules. Time-resolved photoelectron imaging (TRPEI), in conjunction with high-level quantum chemistry calculations, permits detailed insight into the non-adiabatic processes operating in these systems and we review several case studies drawn from our own work in this area over the last few years. Electronically excited Rydberg states that develop significant valence character along specific molecular coordinates provide potentially important pathways for the rapid and efficient redistribution of excess energy following ultraviolet absorption. As such, there is considerable interest in developing better understanding of role of these states play within a broad range of different photochemical environments. A central theme of this review considers the way in which key energy – and angle-resolved observables in TRPEI measurements are influenced by different aspects of transitory Rydberg-to-valence behaviour. Several themes are discussed within a coherent narrative, drawing on experimental and theoretical findings in a selected series of small organic species containing nitrogen heteroatoms. Critically, many of the effects we highlight will also be generalisable to related studies interrogating non-adiabatic processes within a much broader range of molecular systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激发态分子动力学中的里德堡-价演化
本文综述了小多原子分子电子激发态中rydberg - - -价特征动态演化的实验和理论研究。时间分辨光电子成像(TRPEI)与高级量子化学计算相结合,可以详细了解这些系统中运行的非绝热过程,我们回顾了过去几年我们在该领域工作中得出的几个案例研究。电子激发里德伯态沿着特定分子坐标发展出显著的价态特征,为紫外吸收后多余能量的快速有效再分配提供了潜在的重要途径。因此,人们对更好地理解这些状态在广泛的不同光化学环境中所起的作用非常感兴趣。本综述的一个中心主题考虑了TRPEI测量中关键的能量和角度分辨可观测物受到瞬态里德堡价行为不同方面的影响的方式。在一个连贯的叙述中讨论了几个主题,借鉴了一系列含有氮杂原子的小有机物种的实验和理论发现。至关重要的是,我们强调的许多效应也将推广到更广泛的分子系统中询问非绝热过程的相关研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
1.60%
发文量
5
审稿时长
1 months
期刊介绍: International Reviews in Physical Chemistry publishes review articles describing frontier research areas in physical chemistry. Internationally renowned scientists describe their own research in the wider context of the field. The articles are of interest not only to specialists but also to those wishing to read general and authoritative accounts of recent developments in physical chemistry, chemical physics and theoretical chemistry. The journal appeals to research workers, lecturers and research students alike.
期刊最新文献
Theoretical studies of cycloaddition reactions involving C − C triple bonds Three-body recombination in physical chemistry Vibrational and structural dynamics of graphyne Fundamental photophysical concepts and key structural factors for the design of BODIPY-based tunable lasers Heavy Rydberg and ion-pair states: chemistry, spectroscopy and theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1