A Single-Card GPU Implementation of Peridynamics

John Bartlett, D. Storti
{"title":"A Single-Card GPU Implementation of Peridynamics","authors":"John Bartlett, D. Storti","doi":"10.1115/detc2021-68032","DOIUrl":null,"url":null,"abstract":"\n The rapid development of parallelization technology over the recent decades has provided a promising avenue for the acceleration of meshfree simulation methods. One such method, peridynamics, is particularly well-suited for parallelization due to the simplicity of the operations which must occur at each material point. However, while MPI-based parallelization (Message-Passing Interface; a method for CPU-based parallelization) of peridynamic problems is commonplace, GPU parallelization of peridynamics has received far less attention. While GPU technology may have once been an inferior option to MPI parallelization for peridynamics, modern GPU cards are more than capable of handling substantially sized peridynamics problems. This paper presents the parallelization of the peridynamic method for single-card GPU computing, providing a schematic for a compact parallel approach. The resulting method is tested with CUDA on a NVIDIA Tesla P100 card with 16 GB of memory. The per-node memory requirements for each data structure used are evaluated, as well as the per-node execution times for each operation in a million-node benchmark test. This setup is shown to provide speedup factors over 200 for problems sized up to several million nodes, therefore indicating such a GPU is more than adequate for the single-card parallelization of the peridynamic method.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-68032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The rapid development of parallelization technology over the recent decades has provided a promising avenue for the acceleration of meshfree simulation methods. One such method, peridynamics, is particularly well-suited for parallelization due to the simplicity of the operations which must occur at each material point. However, while MPI-based parallelization (Message-Passing Interface; a method for CPU-based parallelization) of peridynamic problems is commonplace, GPU parallelization of peridynamics has received far less attention. While GPU technology may have once been an inferior option to MPI parallelization for peridynamics, modern GPU cards are more than capable of handling substantially sized peridynamics problems. This paper presents the parallelization of the peridynamic method for single-card GPU computing, providing a schematic for a compact parallel approach. The resulting method is tested with CUDA on a NVIDIA Tesla P100 card with 16 GB of memory. The per-node memory requirements for each data structure used are evaluated, as well as the per-node execution times for each operation in a million-node benchmark test. This setup is shown to provide speedup factors over 200 for problems sized up to several million nodes, therefore indicating such a GPU is more than adequate for the single-card parallelization of the peridynamic method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
periddynamics的单卡GPU实现
近几十年来并行化技术的迅速发展为加速无网格仿真方法提供了一条很有前途的途径。其中一种方法,周动力学,特别适合于并行化,因为操作简单,必须发生在每个材料点。然而,当基于mpi的并行化(消息传递接口;(一种基于cpu的并行化方法)的周期动力学问题是司空见惯的,GPU的周期动力学并行化受到的关注远远不够。虽然GPU技术可能曾经是MPI并行化的次等选择,但现代GPU卡能够处理大量大小的periddynamics问题。本文介绍了单卡GPU计算的动态并行化方法,为紧凑的并行化方法提供了一个原理图。该方法在具有16gb内存的NVIDIA Tesla P100卡上使用CUDA进行了测试。评估所使用的每个数据结构的每个节点内存需求,以及百万节点基准测试中每个操作的每个节点执行时间。这种设置可以为多达数百万个节点的问题提供超过200倍的加速系数,因此表明这样的GPU对于periddynamic方法的单卡并行化来说绰绰有余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Bus Factor in Conceptual System Design: Protecting a Design Process Against Major Regional and World Events Exploration of the Digital Innovation Process in the Smart Product-Service System Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton An Algorithm for Partitioning Objects Into a Cube Skeleton and Segmented Shell Covers for Parallelized Additive Manufacturing Neurocognitive Effects of Incentivizing Students to Improve Performance Through Repeat Attempts in Design Settings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1