Ontology-Based Data Quality Management for Data Streams

Sandra Geisler, C. Quix, Sven Weber, M. Jarke
{"title":"Ontology-Based Data Quality Management for Data Streams","authors":"Sandra Geisler, C. Quix, Sven Weber, M. Jarke","doi":"10.1145/2968332","DOIUrl":null,"url":null,"abstract":"Data Stream Management Systems (DSMS) provide real-time data processing in an effective way, but there is always a tradeoff between data quality (DQ) and performance. We propose an ontology-based data quality framework for relational DSMS that includes DQ measurement and monitoring in a transparent, modular, and flexible way. We follow a threefold approach that takes the characteristics of relational data stream management for DQ metrics into account. While (1) Query Metrics respect changes in data quality due to query operations, (2) Content Metrics allow the semantic evaluation of data in the streams. Finally, (3) Application Metrics allow easy user-defined computation of data quality values to account for application specifics. Additionally, a quality monitor allows us to observe data quality values and take counteractions to balance data quality and performance. The framework has been designed along a DQ management methodology suited for data streams. It has been evaluated in the domains of transportation systems and health monitoring.","PeriodicalId":15582,"journal":{"name":"Journal of Data and Information Quality (JDIQ)","volume":"109 1","pages":"1 - 34"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2968332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Data Stream Management Systems (DSMS) provide real-time data processing in an effective way, but there is always a tradeoff between data quality (DQ) and performance. We propose an ontology-based data quality framework for relational DSMS that includes DQ measurement and monitoring in a transparent, modular, and flexible way. We follow a threefold approach that takes the characteristics of relational data stream management for DQ metrics into account. While (1) Query Metrics respect changes in data quality due to query operations, (2) Content Metrics allow the semantic evaluation of data in the streams. Finally, (3) Application Metrics allow easy user-defined computation of data quality values to account for application specifics. Additionally, a quality monitor allows us to observe data quality values and take counteractions to balance data quality and performance. The framework has been designed along a DQ management methodology suited for data streams. It has been evaluated in the domains of transportation systems and health monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于本体的数据流数据质量管理
数据流管理系统(DSMS)以一种有效的方式提供实时数据处理,但总是在数据质量(DQ)和性能之间进行权衡。我们提出了一个基于本体的关系型DSMS数据质量框架,该框架以透明、模块化和灵活的方式包括DQ测量和监控。我们遵循一种三重方法,该方法将DQ指标的关系数据流管理的特征考虑在内。而(1)查询度量考虑由于查询操作而导致的数据质量变化,(2)内容度量允许对流中的数据进行语义评估。最后,(3)应用程序度量允许用户自定义计算数据质量值,以考虑应用程序的具体情况。此外,质量监视器允许我们观察数据质量值,并采取对策来平衡数据质量和性能。该框架是按照适合于数据流的DQ管理方法设计的。已在运输系统和健康监测领域对其进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Special Issue on Data Transparency—Data Quality, Annotation, and Provenance Challenge Paper: The Vision for Time Profiled Temporal Association Mining Editorial: Special Issue on Quality Assessment and Management in Big Data—Part I Developing a Global Data Breach Database and the Challenges Encountered Knowledge Transfer for Entity Resolution with Siamese Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1