Toby C. Murray, Robert Sison, Edward Pierzchalski, C. Rizkallah
{"title":"Compositional Verification and Refinement of Concurrent Value-Dependent Noninterference","authors":"Toby C. Murray, Robert Sison, Edward Pierzchalski, C. Rizkallah","doi":"10.1109/CSF.2016.36","DOIUrl":null,"url":null,"abstract":"Value-dependent noninterference allows the classification of program variables to depend on the contents of other variables, and therefore is able to express a range of data-dependent security policies. However, so far its static enforcement mechanisms for software have been limited either to progress-and termination-insensitive noninterference for sequential languages, or to concurrent message-passing programs without shared memory. Additionally, there exists no methodology for preserving value-dependent noninterference for shared memory programs under compositional refinement. This paper presents a flow-sensitive dependent type system for enforcing timing-sensitive value-dependent noninterference for shared memory concurrent programs, comprising a collection of sequential components, as well as a compositional refinement theory for preserving this property under componentwise refinement. Our results are mechanised in Isabelle/HOL.","PeriodicalId":6500,"journal":{"name":"2016 IEEE 29th Computer Security Foundations Symposium (CSF)","volume":"40 1","pages":"417-431"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 29th Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2016.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53
Abstract
Value-dependent noninterference allows the classification of program variables to depend on the contents of other variables, and therefore is able to express a range of data-dependent security policies. However, so far its static enforcement mechanisms for software have been limited either to progress-and termination-insensitive noninterference for sequential languages, or to concurrent message-passing programs without shared memory. Additionally, there exists no methodology for preserving value-dependent noninterference for shared memory programs under compositional refinement. This paper presents a flow-sensitive dependent type system for enforcing timing-sensitive value-dependent noninterference for shared memory concurrent programs, comprising a collection of sequential components, as well as a compositional refinement theory for preserving this property under componentwise refinement. Our results are mechanised in Isabelle/HOL.