The Hybrid Forecasting Method SVR-ESAR forCovid-19

Juan Frausto Solís, Jose Enrique Olvera Vazquez, J. Barbosa, V. GracielaMoraGuadalupeCastilla, J. Sánchez-Hernández, Joaquín Pérez Ortega, O. Díaz-Parra
{"title":"The Hybrid Forecasting Method SVR-ESAR forCovid-19","authors":"Juan Frausto Solís, Jose Enrique Olvera Vazquez, J. Barbosa, V. GracielaMoraGuadalupeCastilla, J. Sánchez-Hernández, Joaquín Pérez Ortega, O. Díaz-Parra","doi":"10.1101/2020.05.20.20103200","DOIUrl":null,"url":null,"abstract":"We know that SARS-Cov2 produces the new COVID-19 disease, which is one of the most dangerous pandemics of modern times. This pandemic has critical health and economic consequences, and even the health services of the large, powerful nations may be saturated. Thus, forecasting the number of infected persons in any country is essential for controlling the situation. In the literature, different forecasting methods have been published attempting to solve the problem. However, a simple and accurate forecasting method is required for its implementation in any part of the world. This paper presents a precise and straightforward forecasting method named SVR-ESAR (Support Vector regression hybridized with the classical Exponential smoothing and ARIMA). We applied this method to the infected time series in four scenarios: the Whole World, China, the US, and Mexico. We compared our results with those of the literature showing the proposed method has the best accuracy.","PeriodicalId":42388,"journal":{"name":"International Journal of Combinatorial Optimization Problems and Informatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Combinatorial Optimization Problems and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.05.20.20103200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

We know that SARS-Cov2 produces the new COVID-19 disease, which is one of the most dangerous pandemics of modern times. This pandemic has critical health and economic consequences, and even the health services of the large, powerful nations may be saturated. Thus, forecasting the number of infected persons in any country is essential for controlling the situation. In the literature, different forecasting methods have been published attempting to solve the problem. However, a simple and accurate forecasting method is required for its implementation in any part of the world. This paper presents a precise and straightforward forecasting method named SVR-ESAR (Support Vector regression hybridized with the classical Exponential smoothing and ARIMA). We applied this method to the infected time series in four scenarios: the Whole World, China, the US, and Mexico. We compared our results with those of the literature showing the proposed method has the best accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型冠状病毒肺炎SVR-ESAR混合预测方法
我们知道,SARS-Cov2会产生新的COVID-19疾病,这是现代最危险的流行病之一。这种流行病具有严重的健康和经济后果,甚至大国和强国的卫生服务也可能饱和。因此,预测任何国家的感染人数对于控制疫情至关重要。在文献中,已经发表了不同的预测方法来试图解决这个问题。但是,要在世界任何地方实施,都需要一种简单而准确的预测方法。本文提出了一种精确、直观的预测方法SVR-ESAR(支持向量回归与经典的指数平滑和ARIMA混合)。我们将这种方法应用于四种情况下的感染时间序列:全球、中国、美国和墨西哥。我们将结果与文献的结果进行了比较,表明所提出的方法具有最好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
22
期刊最新文献
Personalized Education and Artificial Intelligence The Sustainable Fashion Revolution considering Circular Economy and targeting Generation Z by reusing garments with Acrylan and Terlenka A study on the Detection of Fake news in Spanish A Transformer-Based Multi-Domain Recommender System for E-commerce Quality of Service in Sustainable Development: A QoS-based Analysis of the United Nations Sustainable Development Goals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1