{"title":"Self-Resonant Energy Harvester With a Passively Tuned Sliding Mass","authors":"Hongjip Kim, Arthur C. Smith, O. Barry, L. Zuo","doi":"10.1115/dscc2019-9000","DOIUrl":null,"url":null,"abstract":"\n Passive tuning phenomenon with a sliding mass on a vibrating beam has been observed and studied in the literature. Such a phenomenon can be extended to self-resonant energy harvesting, where the natural frequency can be favorably adjusted to the excitation frequency for enhanced energy harvesting. In this paper, we consider the nonlinear dynamic coupling of a piezoelectric clamped-clamped beam with sliding mass and study experimentally and numerically how these nonlinear interactions affect the performance of the energy harvester. We derive the mathematical model using the extended Hamilton principle. The governing equations of motion are obtained as three coupled nonlinear partial differential equations. The Galerkin method is employed to obtain a reduced order model. Our mathematical formulation is validated via experiments and the results show very good agreement between the simulation and the experiment. Parametric studies are carried out to examine how key parameters affect the performance of the energy harvester. The findings suggest that a passively tuned mechanism with a small sliding mass can increase the power output even when the excitation frequency is far off the original resonance.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Passive tuning phenomenon with a sliding mass on a vibrating beam has been observed and studied in the literature. Such a phenomenon can be extended to self-resonant energy harvesting, where the natural frequency can be favorably adjusted to the excitation frequency for enhanced energy harvesting. In this paper, we consider the nonlinear dynamic coupling of a piezoelectric clamped-clamped beam with sliding mass and study experimentally and numerically how these nonlinear interactions affect the performance of the energy harvester. We derive the mathematical model using the extended Hamilton principle. The governing equations of motion are obtained as three coupled nonlinear partial differential equations. The Galerkin method is employed to obtain a reduced order model. Our mathematical formulation is validated via experiments and the results show very good agreement between the simulation and the experiment. Parametric studies are carried out to examine how key parameters affect the performance of the energy harvester. The findings suggest that a passively tuned mechanism with a small sliding mass can increase the power output even when the excitation frequency is far off the original resonance.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.