{"title":"A Curvature-Tensor-Based Perceptual Quality Metric for 3D Triangular Meshes","authors":"Fakhri Torkhani, K. Wang, J. Chassery","doi":"10.22630/mgv.2014.23.1.4","DOIUrl":null,"url":null,"abstract":"Perceptual quality assessment of 3D triangular meshes is crucial for a variety of applications. In this paper, we present a new objective metric for assessing the visual difference between a reference triangular mesh and its distorted version produced by lossy operations, such as noise addition, simplification, compression and watermarking. The proposed metric is based on the measurement of the distance between curvature tensors of the two meshes under comparison. Our algorithm uses not only tensor eigenvalues (i.e., curvature amplitudes) but also tensor eigenvectors (i.e., principal curvature directions) to derive a perceptually-oriented tensor distance. The proposed metric also accounts for the visual masking effect of the human visual system, through a roughness-based weighting of the local tensor distance. A final score that reflects the visual difference between two meshes is obtained via a Minkowski pooling of the weighted local tensor distances over the mesh surface. We validate the performance of our algorithm on four subjectively-rated visual mesh quality databases, and compare the proposed method with state-of-the-art objective metrics. Experimental results show that our approach achieves high correlation between objective scores and subjective assessments.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2014.23.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
Perceptual quality assessment of 3D triangular meshes is crucial for a variety of applications. In this paper, we present a new objective metric for assessing the visual difference between a reference triangular mesh and its distorted version produced by lossy operations, such as noise addition, simplification, compression and watermarking. The proposed metric is based on the measurement of the distance between curvature tensors of the two meshes under comparison. Our algorithm uses not only tensor eigenvalues (i.e., curvature amplitudes) but also tensor eigenvectors (i.e., principal curvature directions) to derive a perceptually-oriented tensor distance. The proposed metric also accounts for the visual masking effect of the human visual system, through a roughness-based weighting of the local tensor distance. A final score that reflects the visual difference between two meshes is obtained via a Minkowski pooling of the weighted local tensor distances over the mesh surface. We validate the performance of our algorithm on four subjectively-rated visual mesh quality databases, and compare the proposed method with state-of-the-art objective metrics. Experimental results show that our approach achieves high correlation between objective scores and subjective assessments.
期刊介绍:
Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling