Characterization of Kinesthetic Motor Imagery paradigm for wrist and forearm using an algorithm based on the Hurst Exponent and Variogram

A. Mosqueda-Herrera, D. Martinez-Peon, L. Gomez-Sanchez, M. I. Ramirez-Sosa, S. Delfin-Prieto, F. Benavides-Bravo
{"title":"Characterization of Kinesthetic Motor Imagery paradigm for wrist and forearm using an algorithm based on the Hurst Exponent and Variogram","authors":"A. Mosqueda-Herrera, D. Martinez-Peon, L. Gomez-Sanchez, M. I. Ramirez-Sosa, S. Delfin-Prieto, F. Benavides-Bravo","doi":"10.1109/SMC42975.2020.9282888","DOIUrl":null,"url":null,"abstract":"Kinesthetic Motor Imagery (MKI) has been demonstrated to be a robust paradigm for Brain-Computer Interfaces (BCI). In this paper we present the characterization of KMI paradigm of three tasks of wrist and forearm of the right arm using Hurst exponent and variogram, preceding for ICA to map signals into source space. The results show high persistency an average of 0.76 ± 0.07 for KMI Pronation/Supination (PS), 0.82 ± 0.05 for KMI Flexion-Extension). (FE), and 0.90 ± 0.02 for KMI Abduction-Adduction (AA We found a significant difference between the three KMI tasks, useful for multimodal command in BCI.","PeriodicalId":6718,"journal":{"name":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","volume":"27 20 1","pages":"3683-3688"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC42975.2020.9282888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kinesthetic Motor Imagery (MKI) has been demonstrated to be a robust paradigm for Brain-Computer Interfaces (BCI). In this paper we present the characterization of KMI paradigm of three tasks of wrist and forearm of the right arm using Hurst exponent and variogram, preceding for ICA to map signals into source space. The results show high persistency an average of 0.76 ± 0.07 for KMI Pronation/Supination (PS), 0.82 ± 0.05 for KMI Flexion-Extension). (FE), and 0.90 ± 0.02 for KMI Abduction-Adduction (AA We found a significant difference between the three KMI tasks, useful for multimodal command in BCI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于赫斯特指数和变异函数的手腕和前臂动觉运动意象范式表征
动觉运动意象(MKI)已被证明是脑机接口(BCI)的一个强大范例。本文采用赫斯特指数和变异函数对右臂腕部和前臂三个任务的KMI范式进行了表征,然后将信号映射到源空间中。结果显示,KMI前旋/后旋(PS)的平均持续性为0.76±0.07,KMI屈伸(PS)的平均持续性为0.82±0.05。(FE),而KMI外展-内收(AA)则为0.90±0.02。我们发现三个KMI任务之间存在显著差异,这对BCI的多模式命令有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
At-the-Edge Data Processing for Low Latency High Throughput Machine Learning Algorithms Machine Learning for First Principles Calculations of Material Properties for Ferromagnetic Materials Mobility Aware Computation Offloading Model for Edge Computing Toward an Autonomous Workflow for Single Crystal Neutron Diffraction Virtual Infrastructure Twins: Software Testing Platforms for Computing-Instrument Ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1