Reactivity and kinetic studies of benzofuran hydrodeoxygenation over a Ni2P-O/MCM-41 catalyst

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Progress in Reaction Kinetics and Mechanism Pub Date : 2019-07-24 DOI:10.1177/1468678319825909
Xueya Dai, Huaihui Song, Hualin Song, Jing Gong, Feng Li, Yanxiu Liu
{"title":"Reactivity and kinetic studies of benzofuran hydrodeoxygenation over a Ni2P-O/MCM-41 catalyst","authors":"Xueya Dai, Huaihui Song, Hualin Song, Jing Gong, Feng Li, Yanxiu Liu","doi":"10.1177/1468678319825909","DOIUrl":null,"url":null,"abstract":"A nickel phosphide hydrodeoxygenation catalyst (Ni2P-O/MCM-41) was prepared using a new synthetic method. The as-prepared catalyst was evaluated in the hydrodeoxygenation of benzofuran, and the effects of reaction temperature, pressure, and the H2/liquid ratio were investigated. A pseudo first-order model was employed to describe the reaction kinetics of benzofuran hydrodeoxygenation over the Ni2P-O/MCM-41 catalyst. The reaction rate constants (k1–k5) at different temperatures were determined according to this model. At 533 K, the conversion of 2-ethylphenol in to ethylbenzene began to increase dramatically, and the yield of O-free product, ethylcyclohexane, started to increase rapidly. At 573 K, 3.0 MPa, and a H2/liquid ratio of 500 (V/V), the conversion of benzofuran over Ni2P-O/MCM-41 reached 93%, and the combined yield of O-free products was 91%. Contact time analysis indicated that demethylation was not favored over the Ni2P-O/MCM-41 catalyst.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"29 1","pages":"307 - 315"},"PeriodicalIF":2.1000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/1468678319825909","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

A nickel phosphide hydrodeoxygenation catalyst (Ni2P-O/MCM-41) was prepared using a new synthetic method. The as-prepared catalyst was evaluated in the hydrodeoxygenation of benzofuran, and the effects of reaction temperature, pressure, and the H2/liquid ratio were investigated. A pseudo first-order model was employed to describe the reaction kinetics of benzofuran hydrodeoxygenation over the Ni2P-O/MCM-41 catalyst. The reaction rate constants (k1–k5) at different temperatures were determined according to this model. At 533 K, the conversion of 2-ethylphenol in to ethylbenzene began to increase dramatically, and the yield of O-free product, ethylcyclohexane, started to increase rapidly. At 573 K, 3.0 MPa, and a H2/liquid ratio of 500 (V/V), the conversion of benzofuran over Ni2P-O/MCM-41 reached 93%, and the combined yield of O-free products was 91%. Contact time analysis indicated that demethylation was not favored over the Ni2P-O/MCM-41 catalyst.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ni2P-O/MCM-41催化剂上苯并呋喃加氢脱氧反应性及动力学研究
采用新的合成方法制备了磷化镍加氢脱氧催化剂Ni2P-O/MCM-41。考察了所制备的催化剂对苯并呋喃加氢脱氧反应的影响,考察了反应温度、反应压力和H2/液比对催化剂加氢脱氧反应的影响。采用拟一阶模型描述了Ni2P-O/MCM-41催化剂上苯并呋喃加氢脱氧反应动力学。根据该模型确定了不同温度下的反应速率常数k1-k5。在533 K时,2-乙基苯酚in生成乙苯的转化率开始急剧提高,无o产物乙基环己烷的收率开始迅速提高。在573 K、3.0 MPa、H2/液比为500 (V/V)的条件下,ni2o - o /MCM-41对苯并呋喃的转化率达到93%,无o产物的总收率为91%。接触时间分析表明,Ni2P-O/MCM-41催化剂不有利于去甲基化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
5
审稿时长
2.3 months
期刊介绍: The journal covers the fields of kinetics and mechanisms of chemical processes in the gas phase and solution of both simple and complex systems.
期刊最新文献
Understanding the rate-limiting step adsorption kinetics onto biomaterials for mechanism adsorption control Entropy controlled reaction of piperidine with isatin derivatives in 80% aqueous methanol Kinetics and mechanism of the oxidation of furfural by benzimidazolium dichromate under non aqueous medium Melting aspects in flow of second grade nanomaterial with homogeneous–heterogeneous reactions and irreversibility phenomenon: A residual error analysis Two coordination polymers: Crystal structures, prevention and nursing values on postoperative infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1