{"title":"Electrification of Excavators: Electrical configurations, carbon footprint, and cost assessment of retrofit solutions","authors":"M. Wiik, Kristin Fjellheim, J. Suul, K. Azrague","doi":"10.1109/MELE.2023.3264898","DOIUrl":null,"url":null,"abstract":"Technology for the electrification of transport is currently undergoing rapid development that is necessary for reducing greenhouse gas (GHG) emissions. On a global level, the transport sector is responsible for around 12% of the world’s GHG emissions. While the introduction of battery-electric cars is leading the way in terms of commercial scale, developments are also progressing toward electrification of heavy-duty vehicles for road freight transport and coastal transport by battery-electric ships. The performance of modern Li-ion batteries is also enabling electrification of other types of machines and small vehicles that have traditionally been powered by internal combustion engines (ICEs). However, until recently, the developments toward electrification have been mainly directed toward applications with either a large market for series-produced vehicles, such as electric cars, or a high degree of individual engineering for each unit, such as battery-electric ships. Still, there are several application areas where other types of vehicles and machines contribute significantly to GHG emissions.","PeriodicalId":45277,"journal":{"name":"IEEE Electrification Magazine","volume":"51 2 1","pages":"24-34"},"PeriodicalIF":2.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electrification Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELE.2023.3264898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Technology for the electrification of transport is currently undergoing rapid development that is necessary for reducing greenhouse gas (GHG) emissions. On a global level, the transport sector is responsible for around 12% of the world’s GHG emissions. While the introduction of battery-electric cars is leading the way in terms of commercial scale, developments are also progressing toward electrification of heavy-duty vehicles for road freight transport and coastal transport by battery-electric ships. The performance of modern Li-ion batteries is also enabling electrification of other types of machines and small vehicles that have traditionally been powered by internal combustion engines (ICEs). However, until recently, the developments toward electrification have been mainly directed toward applications with either a large market for series-produced vehicles, such as electric cars, or a high degree of individual engineering for each unit, such as battery-electric ships. Still, there are several application areas where other types of vehicles and machines contribute significantly to GHG emissions.
期刊介绍:
IEEE Electrification Magazine is dedicated to disseminating information on all matters related to microgrids onboard electric vehicles, ships, trains, planes, and off-grid applications. Microgrids refer to an electric network in a car, a ship, a plane or an electric train, which has a limited number of sources and multiple loads. Off-grid applications include small scale electricity supply in areas away from high voltage power networks. Feature articles focus on advanced concepts, technologies, and practices associated with all aspects of electrification in the transportation and off-grid sectors from a technical perspective in synergy with nontechnical areas such as business, environmental, and social concerns.