Y. Xing, Bo Zhang Xiaoguang Zhou Ludi Wang Zhenwei You, Mengke Yang
{"title":"City Water Demand Forecasting Based on Improved BP Neural Network","authors":"Y. Xing, Bo Zhang Xiaoguang Zhou Ludi Wang Zhenwei You, Mengke Yang","doi":"10.12783/ISSN.1544-8053/14/S1/15","DOIUrl":null,"url":null,"abstract":"City water demand forecasting is of great significance in reducing the cost of electricity consumption and municipal planning. Back-propagation (BP) neural network has been widely adopted in water demand forecasting in recent years. But BP performs unsatisfactorily in terms of training time and global searching ability, so in this paper we improve BP by two heuristic algorithms, namely, genetic algorithm (GA) and particle swarm optimization (PSO), respectively. The testing and verification of the three algorithms (BP, GA+BP, PSO+BP) have been conducted on real-life water demand forecasting of Beijing city. The obtained results demonstrate that, in spite of the execution time consumed, both GA+BP and PSO+BP performed with higher accuracy and less errors than BP. The obtained results also illustrate that PSO+BP slightly outperformed GA+BP in terms of forecasting accuracy.","PeriodicalId":17101,"journal":{"name":"Journal of Residuals Science & Technology","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Residuals Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/ISSN.1544-8053/14/S1/15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
City water demand forecasting is of great significance in reducing the cost of electricity consumption and municipal planning. Back-propagation (BP) neural network has been widely adopted in water demand forecasting in recent years. But BP performs unsatisfactorily in terms of training time and global searching ability, so in this paper we improve BP by two heuristic algorithms, namely, genetic algorithm (GA) and particle swarm optimization (PSO), respectively. The testing and verification of the three algorithms (BP, GA+BP, PSO+BP) have been conducted on real-life water demand forecasting of Beijing city. The obtained results demonstrate that, in spite of the execution time consumed, both GA+BP and PSO+BP performed with higher accuracy and less errors than BP. The obtained results also illustrate that PSO+BP slightly outperformed GA+BP in terms of forecasting accuracy.
期刊介绍:
The international Journal of Residuals Science & Technology (JRST) is a blind-refereed quarterly devoted to conscientious analysis and commentary regarding significant environmental sciences-oriented research and technical management of residuals in the environment. The journal provides a forum for scientific investigations addressing contamination within environmental media of air, water, soil, and biota and also offers studies exploring source, fate, transport, and ecological effects of environmental contamination.