Pipelined Query Processing in Coprocessor Environments

Henning Funke, S. Breß, Stefan Noll, V. Markl, J. Teubner
{"title":"Pipelined Query Processing in Coprocessor Environments","authors":"Henning Funke, S. Breß, Stefan Noll, V. Markl, J. Teubner","doi":"10.1145/3183713.3183734","DOIUrl":null,"url":null,"abstract":"Query processing on GPU-style coprocessors is severely limited by the movement of data. With teraflops of compute throughput in one device, even high-bandwidth memory cannot provision enough data for a reasonable utilization. Query compilation is a proven technique to improve memory efficiency. However, its inherent tuple-at-a-time processing style does not suit the massively parallel execution model of GPU-style coprocessors. This compromises the improvements in efficiency offered by query compilation. In this paper, we show how query compilation and GPU-style parallelism can be made to play in unison nevertheless. We describe a compiler strategy that merges multiple operations into a single GPU kernel, thereby significantly reducing bandwidth demand. Compared to operator-at-a-time, we show reductions of memory access volumes by factors of up to 7.5x resulting in shorter kernel execution times by factors of up to 9.5x.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3183734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

Query processing on GPU-style coprocessors is severely limited by the movement of data. With teraflops of compute throughput in one device, even high-bandwidth memory cannot provision enough data for a reasonable utilization. Query compilation is a proven technique to improve memory efficiency. However, its inherent tuple-at-a-time processing style does not suit the massively parallel execution model of GPU-style coprocessors. This compromises the improvements in efficiency offered by query compilation. In this paper, we show how query compilation and GPU-style parallelism can be made to play in unison nevertheless. We describe a compiler strategy that merges multiple operations into a single GPU kernel, thereby significantly reducing bandwidth demand. Compared to operator-at-a-time, we show reductions of memory access volumes by factors of up to 7.5x resulting in shorter kernel execution times by factors of up to 9.5x.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协处理器环境中的流水线查询处理
gpu样式的协处理器上的查询处理受到数据移动的严重限制。如果一台设备的计算吞吐量达到每秒万亿次,那么即使是高带宽内存也无法提供足够的数据以实现合理的利用。查询编译是一种经过验证的提高内存效率的技术。然而,其固有的一次元组处理风格并不适合gpu风格的协处理器的大规模并行执行模型。这损害了查询编译提供的效率改进。在本文中,我们展示了如何使查询编译和gpu风格的并行性同时发挥作用。我们描述了一种编译器策略,该策略将多个操作合并到单个GPU内核中,从而显着降低带宽需求。与每次操作符相比,我们发现内存访问量减少了7.5倍,内核执行时间缩短了9.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1