Lila Mouali, G. Veylon, D. Dias, L. Peyras, C. Carvajal, J. Duriez, Eric Antoinet
{"title":"Dynamic Properties of a Compacted Residual Soil from the West Indies","authors":"Lila Mouali, G. Veylon, D. Dias, L. Peyras, C. Carvajal, J. Duriez, Eric Antoinet","doi":"10.3390/geotechnics3020015","DOIUrl":null,"url":null,"abstract":"This paper presents a laboratory investigation of the strain-dependent cyclic properties of a compacted tropical residual soil as measured in a resonant column and cyclic triaxial testing program. The mechanical properties were evaluated with respect to cyclic shear strain amplitude, initial void ratio, and confining pressure. It was shown that the existing models for the prediction of shear modulus reduction and damping ratio curves were not pertinent in the case of the compacted residual soil studied. Empirical equations were developed for the small-strain shear modulus and the normalized shear modulus, damping ratio, and pore water pressure ratio curves for void ratios between e = 1.00 and e = 1.50 and mean effective pressures of p′ = 50−300 kPa. The comparison of the models to the measured values suggest that the uncertainties associated with each of these models are lower than 20% of the predicted values. The results were established as part of a project for the construction of an embankment dam in the West Indies. However, the methodology as well as the model formulation framework presented in the article can be generalized to other residual soils and applied in all fields of geotechnical engineering.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"25 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a laboratory investigation of the strain-dependent cyclic properties of a compacted tropical residual soil as measured in a resonant column and cyclic triaxial testing program. The mechanical properties were evaluated with respect to cyclic shear strain amplitude, initial void ratio, and confining pressure. It was shown that the existing models for the prediction of shear modulus reduction and damping ratio curves were not pertinent in the case of the compacted residual soil studied. Empirical equations were developed for the small-strain shear modulus and the normalized shear modulus, damping ratio, and pore water pressure ratio curves for void ratios between e = 1.00 and e = 1.50 and mean effective pressures of p′ = 50−300 kPa. The comparison of the models to the measured values suggest that the uncertainties associated with each of these models are lower than 20% of the predicted values. The results were established as part of a project for the construction of an embankment dam in the West Indies. However, the methodology as well as the model formulation framework presented in the article can be generalized to other residual soils and applied in all fields of geotechnical engineering.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.