Behavioural Evidence Analysis: A Paradigm Shift in Digital Forensics

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2021-09-01 DOI:10.4018/IJDCF.20210901.OA2
Barkha Shree, Parneeta Dhaliwal
{"title":"Behavioural Evidence Analysis: A Paradigm Shift in Digital Forensics","authors":"Barkha Shree, Parneeta Dhaliwal","doi":"10.4018/IJDCF.20210901.OA2","DOIUrl":null,"url":null,"abstract":"Recent developments in digital forensics (DF) have emphasized that along with inspection of digital evidence, the study of behavioural clues based on behavioural evidence analysis (BEA) is vital for accurate and complete criminal investigation. This paper reviews the existing BEA approaches and process models and concludes the lack of standardisation in the BEA process. The research comprehends that existing BEA methodologies are restricted to specific characteristics of the forensic domain in question. To address these limitations, the paper proposes a standardised approach detailing the step-by-step implementation of BEA in the DF process. The proposed model presents a homogenous technique that can be practically applied to real-life cases. This standard BEA framework classifies digital evidence into categories to decipher associated offender characteristics. Unlike existing models, this new approach collects evidence from diverse sources and leaves no aspect unattended while probing criminal behavioural cues, thus facilitating its applicability across varied forensic domains.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.20210901.OA2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent developments in digital forensics (DF) have emphasized that along with inspection of digital evidence, the study of behavioural clues based on behavioural evidence analysis (BEA) is vital for accurate and complete criminal investigation. This paper reviews the existing BEA approaches and process models and concludes the lack of standardisation in the BEA process. The research comprehends that existing BEA methodologies are restricted to specific characteristics of the forensic domain in question. To address these limitations, the paper proposes a standardised approach detailing the step-by-step implementation of BEA in the DF process. The proposed model presents a homogenous technique that can be practically applied to real-life cases. This standard BEA framework classifies digital evidence into categories to decipher associated offender characteristics. Unlike existing models, this new approach collects evidence from diverse sources and leaves no aspect unattended while probing criminal behavioural cues, thus facilitating its applicability across varied forensic domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行为证据分析:数字取证的范式转变
数字取证(DF)的最新发展强调,随着对数字证据的检查,基于行为证据分析(BEA)的行为线索研究对于准确和完整的刑事调查至关重要。本文回顾了现有的BEA方法和过程模型,总结了BEA过程缺乏标准化的问题。该研究了解到,现有的BEA方法仅限于所讨论的法医领域的特定特征。为了解决这些限制,本文提出了一种标准化的方法,详细介绍了在DF过程中逐步实现BEA。所提出的模型提出了一种可以实际应用于实际案例的同质技术。该标准BEA框架将数字证据分类,以破译相关的罪犯特征。与现有的模型不同,这种新方法从不同的来源收集证据,在探索犯罪行为线索时不留痕迹,从而促进了其在不同法医领域的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks Examining the Behavior of Web Browsers Using Popular Forensic Tools Laboratory Dangerous Operation Behavior Detection System Based on Deep Learning Algorithm A Novel Watermarking Scheme for Audio Data Stored in Third Party Servers Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1