{"title":"Prediction of Protein Expression and Growth Rates by Supervised Machine Learning","authors":"Simiao Zhao","doi":"10.4236/ns.2021.138025","DOIUrl":null,"url":null,"abstract":"The DNA sequences of an organism play an important influence on its transcription and translation process, thus affecting its protein production and growth rate. Due to the com-plexity of DNA, it was extremely difficult to predict the macroscopic characteristics of or-ganisms. However, with the rapid development of machine learning in recent years, it be-comes possible to use powerful machine learning algorithms to process and analyze biolog-ical data. Based on the synthetic DNA sequences of a specific microbe, E. coli, I designed a process to predict its protein production and growth rate. By observing the properties of a data set constructed by previous work, I chose to use supervised learning regressors with encoded DNA sequences as input features to perform the predictions. After comparing different encoders and algorithms, I selected three encoders to encode the DNA sequences as inputs and trained seven different regressors to predict the outputs. The hy-per-parameters are optimized for three regressors which have the best potential prediction performance. Finally, I successfully predicted the protein production and growth rates, with the best R2 score 0.55 and 0.77, respectively, by using encoders to catch the potential fea-tures from the DNA sequences.","PeriodicalId":19083,"journal":{"name":"Natural Science","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ns.2021.138025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The DNA sequences of an organism play an important influence on its transcription and translation process, thus affecting its protein production and growth rate. Due to the com-plexity of DNA, it was extremely difficult to predict the macroscopic characteristics of or-ganisms. However, with the rapid development of machine learning in recent years, it be-comes possible to use powerful machine learning algorithms to process and analyze biolog-ical data. Based on the synthetic DNA sequences of a specific microbe, E. coli, I designed a process to predict its protein production and growth rate. By observing the properties of a data set constructed by previous work, I chose to use supervised learning regressors with encoded DNA sequences as input features to perform the predictions. After comparing different encoders and algorithms, I selected three encoders to encode the DNA sequences as inputs and trained seven different regressors to predict the outputs. The hy-per-parameters are optimized for three regressors which have the best potential prediction performance. Finally, I successfully predicted the protein production and growth rates, with the best R2 score 0.55 and 0.77, respectively, by using encoders to catch the potential fea-tures from the DNA sequences.