J. A. McDivitt, S. Hagemann, M. Baggott, S. Perazzo
{"title":"Chapter 12: Geologic Setting and Gold Mineralization of the Kalgoorlie Gold Camp, Yilgarn Craton, Western Australia","authors":"J. A. McDivitt, S. Hagemann, M. Baggott, S. Perazzo","doi":"10.5382/sp.23.12","DOIUrl":null,"url":null,"abstract":"The Kalgoorlie gold camp in the Yilgarn craton of Western Australia comprises the supergiant Golden Mile and the smaller Mt. Charlotte, Mt. Percy, and Hidden Secret deposits. Since the camp’s discovery in 1893, ~1,950 metric tons (t) of Au have been produced from a total estimated endowment of ~2,300 t. The camp is located within Neoarchean rocks of the Kalgoorlie terrane, within the Eastern Goldfields superterrane of the eastern Yilgarn craton. Gold mineralization is distributed along an 8- × 2-km, NNW-trending corridor, which corresponds to the Boulder Lefroy-Golden Mile fault system. The host stratigraphic sequence, dated at ca. 2710 to 2660 Ma, comprises lower ultramafic and mafic lava flow rocks, and upper felsic to intermediate volcaniclastic, epiclastic, and lava flow rocks intruded by highly differentiated dolerite sills such as the ca. 2685 Ma Golden Mile Dolerite. Multiple sets of NNW-trending, steeply dipping porphyry dikes intruded this sequence from ca. 2675 to 2640 Ma. From ca. 2685 to 2640 Ma, rocks of the Kalgoorlie gold camp were subjected to multiple deformation increments and metamorphism. Early D1 deformation from ca. 2685 to 2675 Ma generated the Golden Mile fault and F1 folds. Prolonged sinistral transpression from ca. 2675 to 2655 Ma produced overprinting, NNW-trending sets of D2-D3 folds and faults. The last deformation stage (D4; < ca. 2650 Ma) is recorded by N- to NNE-trending, dextral faults which offset earlier structures. The main mineralization type in the Golden Mile comprises Fimiston lodes: steeply dipping, WNW- to NNW-striking, gold- and telluride-bearing carbonate-quartz veins with banded, colloform, and crustiform textures surrounded by sericite-carbonate-quartz-pyrite-telluride alteration zones. These lodes were emplaced during the earlier stages of regional sinistral transpression (D2) as Riedel shear-type structures. During a later stage of regional sinistral transpression (D3), exceptionally high grade Oroya-type mineralization developed as shallowly plunging ore shoots with “Green Leader” quartz-sericite-carbonate-pyrite-telluride alteration typified by vanadium-bearing muscovite. In the Hidden Secret orebody, ~3 km north-northwest of the Golden Mile, lode mineralization is a silver-rich variety characterized by increased abundance of hessite and petzite and decreased abundance of calaverite. At the adjacent Mt. Charlotte deposit, the gold-, silver-, and telluride-bearing lodes become subordinate to the Mt. Charlotte-type stockwork veins. The stockwork veins occur as planar, 2- to 50-cm thick, auriferous quartz-carbonate-sulfide veins that define steeply NW- to SE-dipping and shallowly N-dipping sets broadly coeval with D4 deformation. Despite extensive research, there is no consensus on critical features of ore formation in the camp. Models suggest either (1) distinct periods of mineralization over a protracted, ca. 2.68 to 2.64 Ga orogenic history; or (2) broadly synchronous formation of the different types of mineralization at ca. 2.64 Ga. The nature of fluids, metal sources, and mineralizing processes remain debated, with both metamorphic and magmatic models proposed. There is strong evidence for multiple gold mineralization events over the course of the ca. 2.68 to 2.64 orogenic window, differing in genesis and contributions from either magmatic or metamorphic ore-forming processes. However, reconciling these models with field relationships and available geochemical and geochronological constraints remains difficult and is the subject of ongoing research.","PeriodicalId":12540,"journal":{"name":"Geology of the World’s Major Gold Deposits and Provinces","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology of the World’s Major Gold Deposits and Provinces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5382/sp.23.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Kalgoorlie gold camp in the Yilgarn craton of Western Australia comprises the supergiant Golden Mile and the smaller Mt. Charlotte, Mt. Percy, and Hidden Secret deposits. Since the camp’s discovery in 1893, ~1,950 metric tons (t) of Au have been produced from a total estimated endowment of ~2,300 t. The camp is located within Neoarchean rocks of the Kalgoorlie terrane, within the Eastern Goldfields superterrane of the eastern Yilgarn craton. Gold mineralization is distributed along an 8- × 2-km, NNW-trending corridor, which corresponds to the Boulder Lefroy-Golden Mile fault system. The host stratigraphic sequence, dated at ca. 2710 to 2660 Ma, comprises lower ultramafic and mafic lava flow rocks, and upper felsic to intermediate volcaniclastic, epiclastic, and lava flow rocks intruded by highly differentiated dolerite sills such as the ca. 2685 Ma Golden Mile Dolerite. Multiple sets of NNW-trending, steeply dipping porphyry dikes intruded this sequence from ca. 2675 to 2640 Ma. From ca. 2685 to 2640 Ma, rocks of the Kalgoorlie gold camp were subjected to multiple deformation increments and metamorphism. Early D1 deformation from ca. 2685 to 2675 Ma generated the Golden Mile fault and F1 folds. Prolonged sinistral transpression from ca. 2675 to 2655 Ma produced overprinting, NNW-trending sets of D2-D3 folds and faults. The last deformation stage (D4; < ca. 2650 Ma) is recorded by N- to NNE-trending, dextral faults which offset earlier structures. The main mineralization type in the Golden Mile comprises Fimiston lodes: steeply dipping, WNW- to NNW-striking, gold- and telluride-bearing carbonate-quartz veins with banded, colloform, and crustiform textures surrounded by sericite-carbonate-quartz-pyrite-telluride alteration zones. These lodes were emplaced during the earlier stages of regional sinistral transpression (D2) as Riedel shear-type structures. During a later stage of regional sinistral transpression (D3), exceptionally high grade Oroya-type mineralization developed as shallowly plunging ore shoots with “Green Leader” quartz-sericite-carbonate-pyrite-telluride alteration typified by vanadium-bearing muscovite. In the Hidden Secret orebody, ~3 km north-northwest of the Golden Mile, lode mineralization is a silver-rich variety characterized by increased abundance of hessite and petzite and decreased abundance of calaverite. At the adjacent Mt. Charlotte deposit, the gold-, silver-, and telluride-bearing lodes become subordinate to the Mt. Charlotte-type stockwork veins. The stockwork veins occur as planar, 2- to 50-cm thick, auriferous quartz-carbonate-sulfide veins that define steeply NW- to SE-dipping and shallowly N-dipping sets broadly coeval with D4 deformation. Despite extensive research, there is no consensus on critical features of ore formation in the camp. Models suggest either (1) distinct periods of mineralization over a protracted, ca. 2.68 to 2.64 Ga orogenic history; or (2) broadly synchronous formation of the different types of mineralization at ca. 2.64 Ga. The nature of fluids, metal sources, and mineralizing processes remain debated, with both metamorphic and magmatic models proposed. There is strong evidence for multiple gold mineralization events over the course of the ca. 2.68 to 2.64 orogenic window, differing in genesis and contributions from either magmatic or metamorphic ore-forming processes. However, reconciling these models with field relationships and available geochemical and geochronological constraints remains difficult and is the subject of ongoing research.