{"title":"Globally optimal breast mass segmentation from DCE-MRI using deep semantic segmentation as shape prior","authors":"Gabriel Maicas, G. Carneiro, A. Bradley","doi":"10.1109/ISBI.2017.7950525","DOIUrl":null,"url":null,"abstract":"We introduce a new fully automated breast mass segmentation method from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The method is based on globally optimal inference in a continuous space (GOCS) using a shape prior computed from a semantic segmentation produced by a deep learning (DL) model. We propose this approach because the limited amount of annotated training samples does not allow the implementation of a robust DL model that could produce accurate segmentation results on its own. Furthermore, GOCS does not need precise initialisation compared to locally optimal methods on a continuous space (e.g., Mumford-Shah based level set methods); also, GOCS has smaller memory complexity compared to globally optimal inference on a discrete space (e.g., graph cuts). Experimental results show that the proposed method produces the current state-of-the-art mass segmentation (from DCEMRI) results, achieving a mean Dice coefficient of 0.77 for the test set.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"26 1","pages":"305-309"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
We introduce a new fully automated breast mass segmentation method from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The method is based on globally optimal inference in a continuous space (GOCS) using a shape prior computed from a semantic segmentation produced by a deep learning (DL) model. We propose this approach because the limited amount of annotated training samples does not allow the implementation of a robust DL model that could produce accurate segmentation results on its own. Furthermore, GOCS does not need precise initialisation compared to locally optimal methods on a continuous space (e.g., Mumford-Shah based level set methods); also, GOCS has smaller memory complexity compared to globally optimal inference on a discrete space (e.g., graph cuts). Experimental results show that the proposed method produces the current state-of-the-art mass segmentation (from DCEMRI) results, achieving a mean Dice coefficient of 0.77 for the test set.