ELECTROLYSIS OF GRANULATED COPPER-NICKEL MATTE

O. V. Nechvoglod, S. Sergeeva, K. Pikulin, E. Selivanov
{"title":"ELECTROLYSIS OF GRANULATED COPPER-NICKEL MATTE","authors":"O. V. Nechvoglod, S. Sergeeva, K. Pikulin, E. Selivanov","doi":"10.17073/0021-3438-2018-5-16-22","DOIUrl":null,"url":null,"abstract":"The paper justifies the method of processing sulfide-metal melts including their granulation and subsequent electrolysis of granules. High-speed crystallization ensures ultrafine structure formation and stabilizes non-stoichiometric high-temperature phases leading to an increase in the reactivity of granules during subsequent hydrometallurgical processing. Copper powder was isolated at the cathode, and sulfur-sulfide slime (NiS–Сu9S5–Cu7S4–S) was isolated at the anode in a sulfuric acid solution during the electrolysis of granular copper-nickel matte (Cu : Ni = 1 : 1). The influence of current density and process duration on electrolysis parameters and the quality of copper powder isolated was estimated. Sulfur sulfide slime (containing more than 50 % sulfur) forms a passivation layer on granule surfaces, which prevents reagent feeding and reaction product removal from the interaction zone. Anodic current density of up to 100 A/m2 ensures metal conversion into a solution and copper powder (PMS-1 grade) formation at the cathode. Powder is represented by 1 to 100 μm particles of dendritic and fragmented shapes. High-quality copper powder isolation was achieved when saturating electrolyte with nickel to 28,0 g/dm3 . In this case, anode efficiency was 37 % with respect to sulfur, and cathode efficiency was 92,8 % for copper. The process is recommended for copper and nickel separation when processing sulfide-metal alloys. Copper content of in the solution during electrolysis ranged from 0,4 to 2,0 g/dm3.","PeriodicalId":14523,"journal":{"name":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0021-3438-2018-5-16-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper justifies the method of processing sulfide-metal melts including their granulation and subsequent electrolysis of granules. High-speed crystallization ensures ultrafine structure formation and stabilizes non-stoichiometric high-temperature phases leading to an increase in the reactivity of granules during subsequent hydrometallurgical processing. Copper powder was isolated at the cathode, and sulfur-sulfide slime (NiS–Сu9S5–Cu7S4–S) was isolated at the anode in a sulfuric acid solution during the electrolysis of granular copper-nickel matte (Cu : Ni = 1 : 1). The influence of current density and process duration on electrolysis parameters and the quality of copper powder isolated was estimated. Sulfur sulfide slime (containing more than 50 % sulfur) forms a passivation layer on granule surfaces, which prevents reagent feeding and reaction product removal from the interaction zone. Anodic current density of up to 100 A/m2 ensures metal conversion into a solution and copper powder (PMS-1 grade) formation at the cathode. Powder is represented by 1 to 100 μm particles of dendritic and fragmented shapes. High-quality copper powder isolation was achieved when saturating electrolyte with nickel to 28,0 g/dm3 . In this case, anode efficiency was 37 % with respect to sulfur, and cathode efficiency was 92,8 % for copper. The process is recommended for copper and nickel separation when processing sulfide-metal alloys. Copper content of in the solution during electrolysis ranged from 0,4 to 2,0 g/dm3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒状铜镍锍的电解
本文论证了硫化金属熔体的加工方法,包括其造粒和随后的颗粒电解。高速结晶确保了超细结构的形成,并稳定了非化学计量高温相,从而在随后的湿法冶金处理中提高了颗粒的反应性。在硫酸溶液中电解颗粒状铜镍锍(Cu: Ni = 1:1),阴极分离铜粉,阳极分离硫硫泥(NiS -Сu9S5-Cu7S4-S),考察了电流密度和工艺时间对电解参数和分离铜粉质量的影响。硫硫化泥(含硫超过50%)在颗粒表面形成钝化层,阻止了试剂的进料和反应产物从相互作用区去除。阳极电流密度高达100 A/m2,确保金属转化为溶液,并在阴极形成铜粉(PMS-1级)。粉末以1 ~ 100 μm的树枝状和碎片状颗粒为代表。当电解液中镍饱和至28,0 g/dm3时,实现了高质量的铜粉隔离。在这种情况下,阳极效率相对于硫为37%,阴极效率为92,8 %的铜。在加工硫化金属合金时,推荐采用该工艺分离铜镍。电解过程中溶液中铜的含量为0.4 ~ 2.0 g/dm3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ML5 alloy structure and properties at different modification methods Structure and properties of coarse-grained WC-Со hard metals with extra homogeneous microstructure Production of silumins using silicon production waste Al-Ca-M-La-Fe in-situ aluminum-matrix eutectic composites High-temperature ion nitriding of T15K6 indexable carbide inserts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1