Adaptive fault-tolerant control of high-speed maglev train suspension system with partial actuator failure: design and experiments

IF 3.3 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Zhejiang University-SCIENCE A Pub Date : 2023-03-01 DOI:10.1631/jzus.A2200189
Yougang Sun, Fengxing Li, G. Lin, Junqi Xu, Zhenyu He
{"title":"Adaptive fault-tolerant control of high-speed maglev train suspension system with partial actuator failure: design and experiments","authors":"Yougang Sun, Fengxing Li, G. Lin, Junqi Xu, Zhenyu He","doi":"10.1631/jzus.A2200189","DOIUrl":null,"url":null,"abstract":"目的 在强磁场持续运行下,高速磁悬浮列车悬浮系统的执行器容易发生部分故障,使得悬浮控制问题具有挑战性。为了降低容错的成本和能耗,提升高速磁悬浮列车悬浮系统对执行器故障的容忍度,本文从实用的角度出发,提出一种新型的高速磁浮列车悬浮系统自适应补偿非线性容错控制策略。 创新点 1. 无需知道执行器的故障信息,自适应补偿控制律随系统故障的发生而变化,并自适应地进行重构,降低系统的保守性;2. 在没有任何线性化近似的情况下,证明控制器的设计和稳定性。 方法 1. 通过数学推导,建立基于连接结构的悬浮系统的动力学模型(图2和公式(12));2. 通过理论分析,描述执行器故障的类型(公式(14));3. 通过数学分析,设计一种具有自适应更新律的非线性容错悬浮控制律,以实现针对部分执行器故障的稳定悬浮(公式(19)和(20))。利用Lyapunov理论和扩展的Barbalat引理来严格证明闭环渐近稳定性(公式(23));4. 通过在高速磁悬浮车辆-轨道磁耦合实验平台进行硬件实验,验证所提方法的可行性和有效性(图4~17)。 结论 1. 提出的具有自适应补偿的非线性容错控制策略在无故障诊断和隔离的情况下,实现了部分执行器故障时优越的悬浮控制性能;推导出的容错控制律结构简单,可以随着故障的发生而自适应变化,从而提高了系统的可靠性和暂态性能;通过严格的数学分析,证明了整个闭环系统是全局渐近稳定的。2. 通过硬件实验,实现了常规悬浮控制或跟踪悬浮控制,同时也补偿了实际中的部分执行器故障,证明所提方法具有良好的鲁棒性。 High-speed maglev trains will play an important role in the high-speed transportation system in the near future. However, under the conditions of strong magnetic fields and continuous operation, the actuators of the high-speed maglev train suspension system are prone to lose partial effectiveness, which makes the suspension control problem challenging. In addition, most existing fault-tolerant control (FTC) methods for suspension systems require linearization around the equilibrium points during the controller design or stability analysis. Therefore, from a practical perspective, this study presents a novel nonlinear FTC strategy with adaptive compensation for high-speed maglev train suspension systems. First, a nonlinear dynamic model of the suspension system based on join-structure is established and the actuator failures are described. Then, a nonlinear fault-tolerant suspension control law with an adaptive update law is designed to achieve stable suspension against partial actuator failure. The Lyapunov theory and extended Barbalat lemma are utilized to rigorously prove the closed-loop asymptotic stability even if there is partial actuator failure, without any approximation to the original nonlinear dynamics. Finally, hardware experimental results are included to demonstrate the effectiveness of the proposed approach.","PeriodicalId":17508,"journal":{"name":"Journal of Zhejiang University-SCIENCE A","volume":"67 1","pages":"272-283"},"PeriodicalIF":3.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-SCIENCE A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/jzus.A2200189","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

目的 在强磁场持续运行下,高速磁悬浮列车悬浮系统的执行器容易发生部分故障,使得悬浮控制问题具有挑战性。为了降低容错的成本和能耗,提升高速磁悬浮列车悬浮系统对执行器故障的容忍度,本文从实用的角度出发,提出一种新型的高速磁浮列车悬浮系统自适应补偿非线性容错控制策略。 创新点 1. 无需知道执行器的故障信息,自适应补偿控制律随系统故障的发生而变化,并自适应地进行重构,降低系统的保守性;2. 在没有任何线性化近似的情况下,证明控制器的设计和稳定性。 方法 1. 通过数学推导,建立基于连接结构的悬浮系统的动力学模型(图2和公式(12));2. 通过理论分析,描述执行器故障的类型(公式(14));3. 通过数学分析,设计一种具有自适应更新律的非线性容错悬浮控制律,以实现针对部分执行器故障的稳定悬浮(公式(19)和(20))。利用Lyapunov理论和扩展的Barbalat引理来严格证明闭环渐近稳定性(公式(23));4. 通过在高速磁悬浮车辆-轨道磁耦合实验平台进行硬件实验,验证所提方法的可行性和有效性(图4~17)。 结论 1. 提出的具有自适应补偿的非线性容错控制策略在无故障诊断和隔离的情况下,实现了部分执行器故障时优越的悬浮控制性能;推导出的容错控制律结构简单,可以随着故障的发生而自适应变化,从而提高了系统的可靠性和暂态性能;通过严格的数学分析,证明了整个闭环系统是全局渐近稳定的。2. 通过硬件实验,实现了常规悬浮控制或跟踪悬浮控制,同时也补偿了实际中的部分执行器故障,证明所提方法具有良好的鲁棒性。 High-speed maglev trains will play an important role in the high-speed transportation system in the near future. However, under the conditions of strong magnetic fields and continuous operation, the actuators of the high-speed maglev train suspension system are prone to lose partial effectiveness, which makes the suspension control problem challenging. In addition, most existing fault-tolerant control (FTC) methods for suspension systems require linearization around the equilibrium points during the controller design or stability analysis. Therefore, from a practical perspective, this study presents a novel nonlinear FTC strategy with adaptive compensation for high-speed maglev train suspension systems. First, a nonlinear dynamic model of the suspension system based on join-structure is established and the actuator failures are described. Then, a nonlinear fault-tolerant suspension control law with an adaptive update law is designed to achieve stable suspension against partial actuator failure. The Lyapunov theory and extended Barbalat lemma are utilized to rigorously prove the closed-loop asymptotic stability even if there is partial actuator failure, without any approximation to the original nonlinear dynamics. Finally, hardware experimental results are included to demonstrate the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速磁浮列车部分执行器失效悬挂系统的自适应容错控制:设计与实验
目的 在强磁场持续运行下,高速磁悬浮列车悬浮系统的执行器容易发生部分故障,使得悬浮控制问题具有挑战性。为了降低容错的成本和能耗,提升高速磁悬浮列车悬浮系统对执行器故障的容忍度,本文从实用的角度出发,提出一种新型的高速磁浮列车悬浮系统自适应补偿非线性容错控制策略。 创新点 1. 无需知道执行器的故障信息,自适应补偿控制律随系统故障的发生而变化,并自适应地进行重构,降低系统的保守性;2. 在没有任何线性化近似的情况下,证明控制器的设计和稳定性。 方法 1. 通过数学推导,建立基于连接结构的悬浮系统的动力学模型(图2和公式(12));2. 通过理论分析,描述执行器故障的类型(公式(14));3. 通过数学分析,设计一种具有自适应更新律的非线性容错悬浮控制律,以实现针对部分执行器故障的稳定悬浮(公式(19)和(20))。利用Lyapunov理论和扩展的Barbalat引理来严格证明闭环渐近稳定性(公式(23));4. 通过在高速磁悬浮车辆-轨道磁耦合实验平台进行硬件实验,验证所提方法的可行性和有效性(图4~17)。 结论 1. 提出的具有自适应补偿的非线性容错控制策略在无故障诊断和隔离的情况下,实现了部分执行器故障时优越的悬浮控制性能;推导出的容错控制律结构简单,可以随着故障的发生而自适应变化,从而提高了系统的可靠性和暂态性能;通过严格的数学分析,证明了整个闭环系统是全局渐近稳定的。2. 通过硬件实验,实现了常规悬浮控制或跟踪悬浮控制,同时也补偿了实际中的部分执行器故障,证明所提方法具有良好的鲁棒性。 High-speed maglev trains will play an important role in the high-speed transportation system in the near future. However, under the conditions of strong magnetic fields and continuous operation, the actuators of the high-speed maglev train suspension system are prone to lose partial effectiveness, which makes the suspension control problem challenging. In addition, most existing fault-tolerant control (FTC) methods for suspension systems require linearization around the equilibrium points during the controller design or stability analysis. Therefore, from a practical perspective, this study presents a novel nonlinear FTC strategy with adaptive compensation for high-speed maglev train suspension systems. First, a nonlinear dynamic model of the suspension system based on join-structure is established and the actuator failures are described. Then, a nonlinear fault-tolerant suspension control law with an adaptive update law is designed to achieve stable suspension against partial actuator failure. The Lyapunov theory and extended Barbalat lemma are utilized to rigorously prove the closed-loop asymptotic stability even if there is partial actuator failure, without any approximation to the original nonlinear dynamics. Finally, hardware experimental results are included to demonstrate the effectiveness of the proposed approach.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Zhejiang University-SCIENCE A
Journal of Zhejiang University-SCIENCE A 工程技术-工程:综合
CiteScore
5.60
自引率
12.50%
发文量
2964
审稿时长
2.9 months
期刊介绍: Journal of Zhejiang University SCIENCE A covers research in Applied Physics, Mechanical and Civil Engineering, Environmental Science and Energy, Materials Science and Chemical Engineering, etc.
期刊最新文献
A novel approach for the optimal arrangement of tube bundles in a 1000-MW condenser Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator Dynamics of buoyancy-driven microflow in a narrow annular space Key technologies and development trends of the soft abrasive flow finishing method Solid-liquid flow characteristics and sticking-force analysis of valve-core fitting clearance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1