Successful Field Application of Organophilic Clay-Free Invert Emulsion Fluid to Protect the Reservoir Core from Drilling Fluid Damage: Case Study from a Kuwait Field

A.M.Q.M. Al-Ajmi, Abdulaziz Al-Rushoud, Ashis Gohain, F. Khatib, Hussain Al-Haj, Faisal Al-naqa, F. Al-Mutawa, Majed Al-Gharib, Hrishikesh Shinde, Saurabh Arora, Bader Arrar, Manar Bumaryoum, A. Al-Mousa, Rustem Sagirov, Tamer Reda, R. Hamed
{"title":"Successful Field Application of Organophilic Clay-Free Invert Emulsion Fluid to Protect the Reservoir Core from Drilling Fluid Damage: Case Study from a Kuwait Field","authors":"A.M.Q.M. Al-Ajmi, Abdulaziz Al-Rushoud, Ashis Gohain, F. Khatib, Hussain Al-Haj, Faisal Al-naqa, F. Al-Mutawa, Majed Al-Gharib, Hrishikesh Shinde, Saurabh Arora, Bader Arrar, Manar Bumaryoum, A. Al-Mousa, Rustem Sagirov, Tamer Reda, R. Hamed","doi":"10.2118/194707-MS","DOIUrl":null,"url":null,"abstract":"\n To optimize production from a key reservoir, obtaining a core sample with minimum fluid invasion and damage was necessary. In addition, operational nonproductive time (NPT) related to drilling challenges, such as interbedded formations of varying formation pressures, wellbore instability in the reactive, stressed shale sections, and hole cleaning concerns, needed to be mitigated. This paper describes the design of the drilling fluid and its performance in the field.\n After completion of the first dump flood water injection well drilled using an 80/20 conventional nonaqueous fluid (NAF) weighted with barite, low injectivity was observed, which led to acquiring cores to analyze permeability and porosity along with the change in mineralogy resulting from long exposure of the reservoir in the water zone. A 70/30 organophilic clay-free (OCF) NAF was selected to mitigate equivalent circulating density (ECD) risks and minimize damage. Proprietary software was used to customize the bridging design, which was verified during laboratory testing, and to help ensure adequate hole cleaning with the customized low-ECD fluid.\n The engineered OCF NAF contained no damaging materials, such as barite, asphaltic material, or organophilic clay. OCF NAFs are well suited to low-ECD drilling operations because they are more resistant to weighting material sag than conventional NAF systems of similar rheology. This is a product of the high gel strengths developed, even in low-rheology (low-ECD) fluids. Downhole pressure fluctuations are low because these gels are fragile and break easily. For the well in which this OCF NAF was used, drilling, coring, and logging operations were successfully completed without incident. Four cores were acquired with minimal damage compared to the previous wells resulting from the engineered design of the bridging material and fluid-loss control polymers. In addition, there was minimal erosion to these four cores, which was a result of the low-ECD fragile gel fluid used. The fluid-loss control properties of the fluid were also effective in strengthening the wellbore and eliminating differential stuck pipe tendencies that had been observed in previous wells. The fluid properties resulted in minimal ECD, and the OCF NAF displayed excellent suspension along with improved pressure management; no pressure spikes occurred while breaking circulation. There was no NPT related to wellbore instability or any of the drilling challenges previously identified.\n This unique organophilic clay-free and organolignite-free drilling and coring fluid relies on a specialized technology involving an interaction between the emulsifier package and the polymer additives in the fluid. This provides the behaviors needed for reliable weight material suspension and suitable hole cleaning properties in a low-ECD drilling fluid. Together with the appropriately designed bridging package, the OCF NAF provided a better understanding of the reservoir characteristics by delivering the core with minimal damage.","PeriodicalId":11321,"journal":{"name":"Day 3 Wed, March 20, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, March 20, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194707-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To optimize production from a key reservoir, obtaining a core sample with minimum fluid invasion and damage was necessary. In addition, operational nonproductive time (NPT) related to drilling challenges, such as interbedded formations of varying formation pressures, wellbore instability in the reactive, stressed shale sections, and hole cleaning concerns, needed to be mitigated. This paper describes the design of the drilling fluid and its performance in the field. After completion of the first dump flood water injection well drilled using an 80/20 conventional nonaqueous fluid (NAF) weighted with barite, low injectivity was observed, which led to acquiring cores to analyze permeability and porosity along with the change in mineralogy resulting from long exposure of the reservoir in the water zone. A 70/30 organophilic clay-free (OCF) NAF was selected to mitigate equivalent circulating density (ECD) risks and minimize damage. Proprietary software was used to customize the bridging design, which was verified during laboratory testing, and to help ensure adequate hole cleaning with the customized low-ECD fluid. The engineered OCF NAF contained no damaging materials, such as barite, asphaltic material, or organophilic clay. OCF NAFs are well suited to low-ECD drilling operations because they are more resistant to weighting material sag than conventional NAF systems of similar rheology. This is a product of the high gel strengths developed, even in low-rheology (low-ECD) fluids. Downhole pressure fluctuations are low because these gels are fragile and break easily. For the well in which this OCF NAF was used, drilling, coring, and logging operations were successfully completed without incident. Four cores were acquired with minimal damage compared to the previous wells resulting from the engineered design of the bridging material and fluid-loss control polymers. In addition, there was minimal erosion to these four cores, which was a result of the low-ECD fragile gel fluid used. The fluid-loss control properties of the fluid were also effective in strengthening the wellbore and eliminating differential stuck pipe tendencies that had been observed in previous wells. The fluid properties resulted in minimal ECD, and the OCF NAF displayed excellent suspension along with improved pressure management; no pressure spikes occurred while breaking circulation. There was no NPT related to wellbore instability or any of the drilling challenges previously identified. This unique organophilic clay-free and organolignite-free drilling and coring fluid relies on a specialized technology involving an interaction between the emulsifier package and the polymer additives in the fluid. This provides the behaviors needed for reliable weight material suspension and suitable hole cleaning properties in a low-ECD drilling fluid. Together with the appropriately designed bridging package, the OCF NAF provided a better understanding of the reservoir characteristics by delivering the core with minimal damage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在油田成功应用亲有机无粘土反相乳化液保护储层岩心免受钻井液损害:科威特油田案例研究
为了优化关键油藏的产量,必须获得流体侵入和损害最小的岩心样品。此外,与钻井挑战相关的非生产时间(NPT)也需要减少,例如不同地层压力的互层地层、反应性、应力页岩段的井眼不稳定性以及井眼清洁问题。本文介绍了该钻井液的设计及其在现场的使用性能。在使用重晶石加权的80/20常规非水流体(NAF)的第一口倾卸注水井完成后,发现注入能力较低,因此需要获取岩心来分析渗透率和孔隙度,以及由于储层在水区长期暴露而导致的矿物学变化。选择70/30的亲有机无粘土(OCF) NAF来降低等效循环密度(ECD)风险,并将损害降到最低。使用专有软件定制桥接设计,并在实验室测试中进行了验证,并有助于确保使用定制的低ecd流体进行充分的井眼清洁。工程OCF NAF不含有害材料,如重晶石、沥青材料或亲有机粘土。OCF NAF非常适合低ecd钻井作业,因为它比具有相同流变性的传统NAF系统更能抵抗加重材料的凹陷。这是高凝胶强度的产物,即使在低流变性(低ecd)流体中也是如此。由于这些凝胶很脆弱,容易破裂,因此井下压力波动很小。在使用OCF NAF的井中,钻井、取心和测井作业均顺利完成,没有发生任何事故。由于桥接材料和降滤失聚合物的工程设计,与之前的井相比,获得了四个岩心,损坏最小。此外,由于使用了低ecd的易碎凝胶液,这四个岩心的侵蚀很小。该流体的防滤失特性也能有效地加固井筒,消除在之前的井中观察到的差异卡管趋势。流体特性使ECD最小,OCF NAF具有出色的悬浮性能,并改善了压力管理;中断循环时没有出现压力峰值。没有与井筒不稳定或之前发现的任何钻井挑战相关的NPT。这种独特的无有机粘土和无有机褐煤的钻井取心液依赖于一种特殊的技术,该技术涉及乳化剂包和液体中的聚合物添加剂之间的相互作用。这提供了在低ecd钻井液中可靠的重量材料悬浮和合适的井眼清洁性能所需的性能。与适当设计的桥接包一起,OCF NAF能够以最小的损坏交付岩心,从而更好地了解储层特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Laser Gun: The Next Perforation Technology High-Order Accurate Method for Solving the Anisotropic Eikonal Equation Recognizing Abnormal Shock Signatures During Drilling with Help of Machine Learning Optimizing Field Scale Polymer Development in Strong Aquifer Fields in the South of the Sultanate of Oman Experimental Study to Estimate CO2 Solubility in a High Pressure High Temperature HPHT Reservoir Carbonate Aquifer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1