Pavan Kumar Kirar, Kathryn Alvarenga, P. Kolhe, G. Biswas, Kirti Chandra Sahu
{"title":"Coalescence of drops on the free-surface of a liquid pool at elevated temperatures","authors":"Pavan Kumar Kirar, Kathryn Alvarenga, P. Kolhe, G. Biswas, Kirti Chandra Sahu","doi":"10.1063/5.0007402","DOIUrl":null,"url":null,"abstract":"The coalescence dynamics of ethanol drops injected from a needle on the free-surface of an ethanol pool maintained at a higher temperature than the drop is experimentally studied using a high-speed imaging system. The drop is always kept at 25 °C, and the temperature of the ethanol pool is varied using a heater. The coalescence behavior depends on the size of the drop, the height of the needle tip from the free-surface, and the temperature of the ethanol pool. A parametric study is carried out by varying these parameters. The drop exhibits a residence period at low impact velocity, when it floats on the free-surface before the coalescence begins. Subsequently, the complete coalescence and partial coalescence dynamics are observed for different sets of parameters considered. It is found that increasing the temperature of the ethanol pool reduces the residence time of the drop. This phenomenon is explained by analyzing the forces acting on the drop and the capillary waves generated due to the temperature gradient between the drop and the ethanol pool. During partial coalescence, we also observed that the diameter of the daughter droplet decreases as the size of the primary drop and pool temperature are increased. As expected, due to the gravity effect, increasing the size of the drop also decreases the residence time. A regime map designating the complete coalescence and partial coalescence dynamics is plotted in the pool temperature and drop impact height space.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0007402","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 17
Abstract
The coalescence dynamics of ethanol drops injected from a needle on the free-surface of an ethanol pool maintained at a higher temperature than the drop is experimentally studied using a high-speed imaging system. The drop is always kept at 25 °C, and the temperature of the ethanol pool is varied using a heater. The coalescence behavior depends on the size of the drop, the height of the needle tip from the free-surface, and the temperature of the ethanol pool. A parametric study is carried out by varying these parameters. The drop exhibits a residence period at low impact velocity, when it floats on the free-surface before the coalescence begins. Subsequently, the complete coalescence and partial coalescence dynamics are observed for different sets of parameters considered. It is found that increasing the temperature of the ethanol pool reduces the residence time of the drop. This phenomenon is explained by analyzing the forces acting on the drop and the capillary waves generated due to the temperature gradient between the drop and the ethanol pool. During partial coalescence, we also observed that the diameter of the daughter droplet decreases as the size of the primary drop and pool temperature are increased. As expected, due to the gravity effect, increasing the size of the drop also decreases the residence time. A regime map designating the complete coalescence and partial coalescence dynamics is plotted in the pool temperature and drop impact height space.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves