Poster: PanDA: Next Generation Workload Management and Analysis System for Big Data

K. De, A. Klimentov, S. Panitkin, M. Titov, A. Vaniachine, T. Wenaus, D. Yu, G. Záruba
{"title":"Poster: PanDA: Next Generation Workload Management and Analysis System for Big Data","authors":"K. De, A. Klimentov, S. Panitkin, M. Titov, A. Vaniachine, T. Wenaus, D. Yu, G. Záruba","doi":"10.1109/SC.Companion.2012.302","DOIUrl":null,"url":null,"abstract":"In real world any big science project implies to use a sophisticated Workload Management System (WMS) that deals with a huge amount of highly distributed data, which is often accessed by large collaborations. The Production and Distributed Analysis System (PanDA) is a high-performance WMS that is aimed to meet production and analysis requirements for a data-driven workload management system capable of operating at the Large Hadron Collider data processing scale. PanDA provides execution environments for a wide range of experimental applications, automates centralized data production and processing, enables analysis activity of physics groups, supports custom workflow of individual physicists, provides a unified view of distributed worldwide resources, presents status and history of workflow through an integrated monitoring system, archives and curates all workflow. PanDA is now being generalized and packaged, as a WMS already proven at extreme scales, for the wider use of the Big Data community.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"145 1","pages":"1523-1523"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In real world any big science project implies to use a sophisticated Workload Management System (WMS) that deals with a huge amount of highly distributed data, which is often accessed by large collaborations. The Production and Distributed Analysis System (PanDA) is a high-performance WMS that is aimed to meet production and analysis requirements for a data-driven workload management system capable of operating at the Large Hadron Collider data processing scale. PanDA provides execution environments for a wide range of experimental applications, automates centralized data production and processing, enables analysis activity of physics groups, supports custom workflow of individual physicists, provides a unified view of distributed worldwide resources, presents status and history of workflow through an integrated monitoring system, archives and curates all workflow. PanDA is now being generalized and packaged, as a WMS already proven at extreme scales, for the wider use of the Big Data community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海报:PanDA:面向大数据的新一代工作量管理与分析系统
在现实世界中,任何大型科学项目都意味着使用复杂的工作负载管理系统(WMS)来处理大量高度分布式的数据,这些数据通常由大型协作访问。生产和分布式分析系统(PanDA)是一个高性能的WMS,旨在满足能够在大型强子对撞机数据处理规模上运行的数据驱动工作负载管理系统的生产和分析需求。PanDA为广泛的实验应用提供执行环境,自动化集中数据生产和处理,支持物理组的分析活动,支持单个物理学家的自定义工作流,提供分布式全球资源的统一视图,通过集成的监控系统呈现工作流的状态和历史,存档和管理所有工作流。作为一个已经在极端规模上得到验证的WMS, PanDA现在正在被一般化和打包,以供大数据社区更广泛地使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1