{"title":"Predicting Financial Distress of Chinese Listed Corporate by a Hybrid PCA-RBFNN Model","authors":"Ying Sai, Shiwei Zhu, Zhang Tao","doi":"10.1109/ICNC.2008.778","DOIUrl":null,"url":null,"abstract":"This paper is to develop a hybrid PCA-RBFNN model for financial distress prediction of Chinese listed corporate. The proposed hybrid model integrates the principle component analysis (PCA) method and the radial-basis function neural network (RBFNN). Besides the traditional finance indicators, we introduce the cash-flow indicators which perfectly reflect the real-time financial situation of a corporate. In our proposed model, the PCA method is employed to select indicators and to reduce dimensions, and the RBFNN is used as a predicting tool for corporate financial situation. The experimental results suggest that the model has high prediction accuracy and execution efficiency.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"45 1","pages":"277-281"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper is to develop a hybrid PCA-RBFNN model for financial distress prediction of Chinese listed corporate. The proposed hybrid model integrates the principle component analysis (PCA) method and the radial-basis function neural network (RBFNN). Besides the traditional finance indicators, we introduce the cash-flow indicators which perfectly reflect the real-time financial situation of a corporate. In our proposed model, the PCA method is employed to select indicators and to reduce dimensions, and the RBFNN is used as a predicting tool for corporate financial situation. The experimental results suggest that the model has high prediction accuracy and execution efficiency.