Novel Attribute Reduction on Decision Rules*

Can Wang, Qiang Lin, Chunming Xu, Lin Li, Xiaoyong Fan
{"title":"Novel Attribute Reduction on Decision Rules*","authors":"Can Wang, Qiang Lin, Chunming Xu, Lin Li, Xiaoyong Fan","doi":"10.1109/ICCSNT50940.2020.9305012","DOIUrl":null,"url":null,"abstract":"From the perspective of formal concept analysis, the concepts of a formal context generated become larger in number with growing data. Attribute reduction based on decision formal context is to find out minimum subsets of attributes while maintaining the ability of classification, decision rules simplified as well which will make decision making much easier. This paper firstly generates decision rules, divides decision rules into strong rules and weak rules, puts forward judging theorems of non-redundant rules and rule reduction; secondly, proposes an approach of rule reduction by categories of attributes; in the end, discusses the time complexity. Comparing with other algorithms on runtime and ability of classification, experimental analysis shows that our method approves feasibility and accuracy. In the end, it draws a conclusion and discusses open issues.","PeriodicalId":6794,"journal":{"name":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","volume":"48 1","pages":"69-74"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSNT50940.2020.9305012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

From the perspective of formal concept analysis, the concepts of a formal context generated become larger in number with growing data. Attribute reduction based on decision formal context is to find out minimum subsets of attributes while maintaining the ability of classification, decision rules simplified as well which will make decision making much easier. This paper firstly generates decision rules, divides decision rules into strong rules and weak rules, puts forward judging theorems of non-redundant rules and rule reduction; secondly, proposes an approach of rule reduction by categories of attributes; in the end, discusses the time complexity. Comparing with other algorithms on runtime and ability of classification, experimental analysis shows that our method approves feasibility and accuracy. In the end, it draws a conclusion and discusses open issues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
决策规则的新型属性约简*
从形式概念分析的角度来看,随着数据的增长,生成的形式语境的概念数量也越来越多。基于决策形式上下文的属性约简是在保持分类能力的同时找出属性的最小子集,简化了决策规则,使决策更加容易。本文首先生成决策规则,将决策规则分为强规则和弱规则,提出了非冗余规则的判断定理和规则约简定理;其次,提出了一种基于属性类别的规则约简方法;最后,讨论了时间复杂度问题。实验分析表明,该方法在运行时间和分类能力上与其他算法进行了比较,证明了该方法的可行性和准确性。最后,得出结论,并对有待解决的问题进行讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Optimal Rescheduling Mode of Flexible Job Shop Under the Arrival of a New Job Object Detection on Aerial Image by Using High-Resolutuion Network An Improved Ant Colony Algorithm is Proposed to Solve the Single Objective Flexible Job-shop Scheduling Problem RFID Network Planning for Flexible Manufacturing Workshop with Multiple Coverage Requirements Grounding Pile Detection System based on Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1