Differential privacy based classification model for mining medical data stream using adaptive random forest

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS Acta Universitatis Sapientiae Informatica Pub Date : 2021-06-01 DOI:10.2478/ausi-2021-0001
Hayder K. Fatlawi, A. Kiss
{"title":"Differential privacy based classification model for mining medical data stream using adaptive random forest","authors":"Hayder K. Fatlawi, A. Kiss","doi":"10.2478/ausi-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract Most typical data mining techniques are developed based on training the batch data which makes the task of mining the data stream represent a significant challenge. On the other hand, providing a mechanism to perform data mining operations without revealing the patient’s identity has increasing importance in the data mining field. In this work, a classification model with differential privacy is proposed for mining the medical data stream using Adaptive Random Forest (ARF). The experimental results of applying the proposed model on four medical datasets show that ARF mostly has a more stable performance over the other six techniques.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"36 1","pages":"1 - 20"},"PeriodicalIF":0.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2021-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Most typical data mining techniques are developed based on training the batch data which makes the task of mining the data stream represent a significant challenge. On the other hand, providing a mechanism to perform data mining operations without revealing the patient’s identity has increasing importance in the data mining field. In this work, a classification model with differential privacy is proposed for mining the medical data stream using Adaptive Random Forest (ARF). The experimental results of applying the proposed model on four medical datasets show that ARF mostly has a more stable performance over the other six techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于差分隐私的自适应随机森林医疗数据流挖掘分类模型
大多数典型的数据挖掘技术都是基于批量数据的训练而发展起来的,这使得数据流的挖掘任务具有很大的挑战性。另一方面,提供一种不泄露患者身份的机制来执行数据挖掘操作在数据挖掘领域变得越来越重要。本文提出了一种基于自适应随机森林(ARF)的医疗数据流分类模型。将该模型应用于4个医疗数据集的实验结果表明,相对于其他6种技术,ARF在大多数情况下具有更稳定的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
期刊最新文献
E-super arithmetic graceful labelling of Hi(m, m), Hi(1) (m, m) and chain of even cycles On agglomeration-based rupture degree in networks and a heuristic algorithm On domination in signed graphs Connected certified domination edge critical and stable graphs Eccentric connectivity index in transformation graph Gxy+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1