Effects of Allocryptopine on the Proliferation and Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma through m6A Mediated Hedgehog Signaling Pathway.

Junxia Gong, Chunlin Wang, Fang Zhang, Weidong Lan
{"title":"Effects of Allocryptopine on the Proliferation and Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma through m6A Mediated Hedgehog Signaling Pathway.","authors":"Junxia Gong, Chunlin Wang, Fang Zhang, Weidong Lan","doi":"10.1615/jenvironpatholtoxicoloncol.2021039718","DOIUrl":null,"url":null,"abstract":"BACKGROUND Allocryptopine is an isoquinoline alkaloid extracted from Macleaya cordata. This study aimed to explore the effects of allocryptopine on the growth and metastasis of oral squamous cell carcinoma (OSCC) cells. METHODS The human OSCC cell line HSC-3 and SAS were selected in this study. MTT assay was performed to measure cell viability. Western blot was used to detect protein expressions. transwell assay was conducted to determine the migrated and invaded cells. M6A modification was confirmed by methylated RNA immunoprecipitation assay. RESULTS Compared with the NC group, the cell viability, migration and invasion ability of OSCC cells were suppressed after allocryptopine treatment in a dose dependent manner. Allocryptopine upregulated the E-cadherin expression and downregulated N-cadherin and Vimentin expressions in the OSCC cells. In addition, the protein expressions of patched receptor 1 (PTCH1), smoothened co-receptor (SMO) and Gli family (GLI1) were downregulated after allocryptopine treatment. Furthermore, allocryptopine treatment decreased the expression of Methyltransferase like 3 (METTL3) and inhibited N6-methyladenosine (m6A) modification of PTCH1. Moreover, overexpression of PTCH1 reversed the effects of allocryptopine and induced the aggressiveness of OSCC cells. CONCLUSION Allocryptopine suppressed the proliferation and epithelial-mesenchymal transition (EMT) of OSCC cells via m6A mediated Hedgehog signaling pathway, relieving the carcinogenic behaviors of OSCC.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/jenvironpatholtoxicoloncol.2021039718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

BACKGROUND Allocryptopine is an isoquinoline alkaloid extracted from Macleaya cordata. This study aimed to explore the effects of allocryptopine on the growth and metastasis of oral squamous cell carcinoma (OSCC) cells. METHODS The human OSCC cell line HSC-3 and SAS were selected in this study. MTT assay was performed to measure cell viability. Western blot was used to detect protein expressions. transwell assay was conducted to determine the migrated and invaded cells. M6A modification was confirmed by methylated RNA immunoprecipitation assay. RESULTS Compared with the NC group, the cell viability, migration and invasion ability of OSCC cells were suppressed after allocryptopine treatment in a dose dependent manner. Allocryptopine upregulated the E-cadherin expression and downregulated N-cadherin and Vimentin expressions in the OSCC cells. In addition, the protein expressions of patched receptor 1 (PTCH1), smoothened co-receptor (SMO) and Gli family (GLI1) were downregulated after allocryptopine treatment. Furthermore, allocryptopine treatment decreased the expression of Methyltransferase like 3 (METTL3) and inhibited N6-methyladenosine (m6A) modification of PTCH1. Moreover, overexpression of PTCH1 reversed the effects of allocryptopine and induced the aggressiveness of OSCC cells. CONCLUSION Allocryptopine suppressed the proliferation and epithelial-mesenchymal transition (EMT) of OSCC cells via m6A mediated Hedgehog signaling pathway, relieving the carcinogenic behaviors of OSCC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异隐托平通过m6A介导的Hedgehog信号通路对口腔鳞状细胞癌增殖和上皮-间质转化的影响
背景:异隐碱是一种从麦草属植物中提取的异喹啉类生物碱。本研究旨在探讨异隐托平对口腔鳞癌(OSCC)细胞生长和转移的影响。方法选择人OSCC细胞系HSC-3和SAS。MTT法测定细胞活力。Western blot检测蛋白表达。Transwell法检测细胞迁移和浸润情况。甲基化RNA免疫沉淀法证实M6A修饰。结果与NC组比较,异隐托平对OSCC细胞活力、迁移和侵袭能力均有一定的抑制作用,且呈剂量依赖性。异隐topine上调OSCC细胞中E-cadherin的表达,下调N-cadherin和Vimentin的表达。此外,异隐碱处理后,斑块受体1 (PTCH1)、平滑共受体(SMO)和Gli家族(GLI1)蛋白表达下调。此外,异隐碱处理降低了甲基转移酶如3 (METTL3)的表达,抑制了PTCH1的n6 -甲基腺苷(m6A)修饰。此外,PTCH1的过表达逆转了异隐托平的作用,并诱导了OSCC细胞的侵袭性。结论异隐topine通过m6A介导的Hedgehog信号通路抑制OSCC细胞的增殖和上皮间质转化(epithelial-mesenchymal transition, EMT),减轻OSCC的致癌行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can the Toxic Heavy Metals Be Beneficial at Trace Levels? Understanding Their Outranged Biological Functions. Chemotherapeutic Drugs Endow Gastric Cancer Mesenchymal Stem Cells with Stronger Tumor-Promoting Ability. Comprehensive Investigation of m6A Regulators for Prognosis in Head and Neck Squamous Cell Carcinoma. Frequency of Healthy Control Genotype of VDR Gene Polymorphisms in the Saudi Population of the Ha'il Region: A Comparative Study with Worldwide Population. The Mutational and Transcriptional Landscapes of Speckle-Type POZ Protein (SPOP) and Androgen Receptor (AR) in a Single-Center pT3 Prostatectomy Cohort.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1