Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID-19 risk

Lingxiao Wang, Tian Xu, Till Hannes Stoecker, H. Stoecker, Yin Jiang, K. Zhou
{"title":"Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID-19 risk","authors":"Lingxiao Wang, Tian Xu, Till Hannes Stoecker, H. Stoecker, Yin Jiang, K. Zhou","doi":"10.1088/2632-2153/ac0314","DOIUrl":null,"url":null,"abstract":"As the COVID-19 pandemic continues to ravage the world, it is of critical significance to provide a timely risk prediction of the COVID-19 in multi-level. To implement it and evaluate the public health policies, we develop a framework with machine learning assisted to extract epidemic dynamics from the infection data, in which contains a county-level spatiotemporal epidemiological model that combines a spatial Cellular Automaton (CA) with a temporal Susceptible-Undiagnosed-Infected-Removed (SUIR) model. Compared with the existing time risk prediction models, the proposed CA-SUIR model shows the multi-level risk of the county to the government and coronavirus transmission patterns under different policies. This new toolbox is first utilized to the projection of the multi-level COVID-19 prevalence over 412 Landkreis (counties) in Germany, including t-day-ahead risk forecast and the risk assessment to the travel restriction policy. As a practical illustration, we predict the situation at Christmas where the worst fatalities are 34.5 thousand, effective policies could contain it to below 21 thousand. Such intervenable evaluation system could help decide on economic restarting and public health policies making in pandemic.","PeriodicalId":18148,"journal":{"name":"Mach. Learn. Sci. Technol.","volume":"25 1","pages":"35031"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mach. Learn. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ac0314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

As the COVID-19 pandemic continues to ravage the world, it is of critical significance to provide a timely risk prediction of the COVID-19 in multi-level. To implement it and evaluate the public health policies, we develop a framework with machine learning assisted to extract epidemic dynamics from the infection data, in which contains a county-level spatiotemporal epidemiological model that combines a spatial Cellular Automaton (CA) with a temporal Susceptible-Undiagnosed-Infected-Removed (SUIR) model. Compared with the existing time risk prediction models, the proposed CA-SUIR model shows the multi-level risk of the county to the government and coronavirus transmission patterns under different policies. This new toolbox is first utilized to the projection of the multi-level COVID-19 prevalence over 412 Landkreis (counties) in Germany, including t-day-ahead risk forecast and the risk assessment to the travel restriction policy. As a practical illustration, we predict the situation at Christmas where the worst fatalities are 34.5 thousand, effective policies could contain it to below 21 thousand. Such intervenable evaluation system could help decide on economic restarting and public health policies making in pandemic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习时空流行病学模型评估德国县级COVID-19风险
在新冠肺炎疫情持续肆虐全球的背景下,及时提供多层次的新冠肺炎风险预测具有重要意义。为了实施和评估公共卫生政策,我们开发了一个框架,利用机器学习辅助从感染数据中提取流行病动态,其中包含一个县级时空流行病学模型,该模型结合了空间元胞自动机(CA)和时间易感-未诊断-感染-移除(SUIR)模型。与现有的时间风险预测模型相比,本文提出的CA-SUIR模型显示了不同政策下县域对政府的多层次风险和冠状病毒传播模式。首先将新工具箱用于德国412个县的多层次疫情预测,包括提前t日风险预测和旅行限制政策风险评估。作为一个实际的例子,我们预测圣诞节的情况,最严重的死亡人数是3.45万人,有效的政策可以将其控制在2.1万人以下。这种可干预的评估体系可以帮助决定大流行时期的经济重启和公共卫生政策制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transforming two-dimensional tensor networks into quantum circuits for supervised learning Propagation of priors for more accurate and efficient spectroscopic functional fits and their application to ferroelectric hysteresis Neural network analysis of neutron and x-ray reflectivity data: pathological cases, performance and perspectives Advances in scientific literature mining for interpreting materials characterization Phases of learning dynamics in artificial neural networks in the absence or presence of mislabeled data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1