Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network

Mertha Endah Ervina, Rini Silvi, Intaniah Ratna Nur Wisisono
{"title":"Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network","authors":"Mertha Endah Ervina, Rini Silvi, Intaniah Ratna Nur Wisisono","doi":"10.15642/MANTIK.2018.4.2.90-99","DOIUrl":null,"url":null,"abstract":"Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results.","PeriodicalId":32704,"journal":{"name":"Mantik Jurnal Matematika","volume":"8 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mantik Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15642/MANTIK.2018.4.2.90-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
列车调度影响着旅客满意度和列车服务提供商的盈利能力。反向传播神经网络(BPNN)的预测方法收敛速度相对较慢。因此,本研究采用弹性反向传播(Resilient Back-propagation, Rprop),因为它具有更快的收敛速度和更高的精度。生成的模型是Jabodetabek、Java(非Jabodetabek)、苏门答腊和印度尼西亚的模型。从数据分析的结果可以看出,由训练数据形成的具有弹性反向传播(Resilient Back-propagation, Rprop)的神经网络模型的性能给出了非常准确的预测精度水平,每个模型的平均绝对百分比误差(MAPE)小于10%。然后对未来12个月进行预测,并与数据测试结果进行比较,Rprop提供了非常高的预测精度,MAPE值在10%以下。每个预测铁路乘客数量的MAPE值为Jabodetabek的7.50%,爪哇(非Jabodetabek)的5.89%,苏门答腊的5.36%和印度尼西亚的4.80%。也就是说,在这种情况下,可以使用带有Rprop的四种神经网络体系结构,并获得非常准确的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
The role of ethical leadership in organizational culture Analysis of e-learning user satisfaction at XYZ University in the new normal era of the covid-19 pandemic The investigation of EFL teachers’ professional and social competence in english online teaching (In Utilizing ICT Media) Web based yogyakarta food recipe application using sdlc waterfall method Carimontir marketing PLAN s(motor vehicle service application)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1